Accurate key parameters estimation of PEM fuel cells using self-adaptive bonobo optimizer

被引:2
|
作者
Kouache, Ahmed Zouhir [1 ]
Djafour, Ahmed [1 ]
Danoune, Mohammed Bilal [1 ]
Benzaoui, Khaled Mohammed Said [1 ]
Gougui, Abdelmoumen [1 ]
机构
[1] Univ Ouargla, Fac Sci Appl, Lab LAGE, Ouargla 30000, Algeria
关键词
PEM fuel cell; PEMFC modeling; Optimal parameters identification; Self-adaptive bonobo optimizer; Heliocentris FC-50; Nexa (R) 1200; HYBRID POWER-SYSTEM; MODEL; IDENTIFICATION;
D O I
10.1016/j.compchemeng.2024.108894
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The present study introduces an efficient Self-Adaptive Bonobo Optimizer (SaBO) for identifying the unknown parameters of the proton exchange membrane fuel cell (PEMFC). A comparative analysis between recent robust approaches, such as Gradient-based Optimizer (GBO), Bald Eagle Search Algorithm, and Rime-Ice algorithm (RIME), has been introduced. The basic concept is to minimize the mean bias error between the measured and predicted stack voltage. The main results show that although the techniques were close, in contrast, the SaBO optimizer provides a better superiority than GBO, BES, and RIME for an optimum forecast of the PEMFCs model. Moreover, the best fitness was achieved with the SaBO at 0.0367 (V) for the Heliocentris FC-50, and 0.1150 (V) for Nexa (R) 1200, also, with the minimum deviation of 0.0027 & 0.0172, and high efficiency. These achievements denote that the SaBO algorithm is more stable and robust for PEMFC parameter estimation.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] An Improved Design of Knee Orthosis Using Self-Adaptive Bonobo Optimizer (SaBO)
    Das, Amit Kumar
    Sahoo, Saikat
    Pratihar, Dilip Kumar
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2023, 107 (01)
  • [2] An Improved Design of Knee Orthosis Using Self-Adaptive Bonobo Optimizer (SaBO)
    Amit Kumar Das
    Saikat Sahoo
    Dilip Kumar Pratihar
    Journal of Intelligent & Robotic Systems, 2023, 107
  • [3] Accurate PEM fuel cells parameters estimation using hybrid artificial bee colony differential evolution shuffled complex optimizer
    Hachana, Oussama
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (05) : 6383 - 6405
  • [4] Extracting optimal parameters of PEM fuel cells using Salp Swarm Optimizer
    El-Fergany, Attia A.
    RENEWABLE ENERGY, 2018, 119 : 641 - 648
  • [5] Optimal parameters of PEM fuel cells using chaotic binary shark smell optimizer
    Han, Wenqi
    Li, Dezhi
    Yu, Dongmin
    Ebrahimian, Homayoun
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (03) : 7770 - 7784
  • [6] Extraction of PEM fuel cell parameters using Walrus Optimizer
    Houssein, Essam H.
    Samee, Nagwan Abdel
    Alabdulhafith, Maali
    Said, Mokhtar
    AIMS MATHEMATICS, 2024, 9 (05): : 12726 - 12750
  • [7] Adaptive Online Parameter Estimation Algorithm of PEM Fuel Cells
    Xing, Yashan
    Na, Jing
    Costa-Castello, Ramon
    2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 441 - 446
  • [8] Self-adaptive henry gas solubility optimizer for identification of solid oxide fuel cell
    Xu, Hongxia
    Razmjooy, Navid
    EVOLVING SYSTEMS, 2024, 15 (01) : 133 - 151
  • [9] Efficient PEM fuel cells parameters identification using hybrid artificial bee colony differential evolution optimizer
    Hachana, Oussama
    El-Fergany, Attia A.
    ENERGY, 2022, 250
  • [10] Self-adaptive henry gas solubility optimizer for identification of solid oxide fuel cell
    Hongxia Xu
    Navid Razmjooy
    Evolving Systems, 2024, 15 : 133 - 151