Microstructure Evolution and Mechanical Properties of 16-Layer 2195 Al-Li Alloy Components Manufactured by Additive Friction Stir Deposition

被引:2
|
作者
Liu, Qinglin [1 ]
Lai, Ruilin [2 ]
Wang, Hui [1 ]
Li, Yidi [1 ]
Li, Yunping [1 ]
Zhan, Lihua [2 ,3 ]
机构
[1] State Key Laboratory for Powder Metallurgy, Central South University, Changsha,410083, China
[2] Research Institute of Light Alloy, Central South University, Changsha,410083, China
[3] State Key Laboratory of High-performance Complex Manufacturing, Central South University, Changsha,410083, China
关键词
Aluminum alloys - Lithium alloys - Microhardness - Thermal cycling;
D O I
10.3390/ma17235748
中图分类号
学科分类号
摘要
The fabrication of multi-layer alloys by additive friction stir deposition (AFSD) results in a complicated microstructure and mechanical property evolution due to the repeated thermal inputs impacting the existing deposited layers. This work systematically studied the microstructure and mechanical properties of several areas (last layers, intermediate layers, and first layers) of a 16-layer 2195 alloy component fabricated by AFSD to ascertain the effect of repeated thermal cycling. The periodic heat input resulted in the minimal quantities of T1-phase only appearing in the last layers of the sample, while the θ′-phase developed a complex precipitate with the δ′ and β′ phases. The mechanical properties of the 2195 sample exhibit a gradient development related to the microstructure, with a decrease in strength and hardness from top to bottom. The samples located in the last layers show the highest microhardness of 117.0 Hv, yield strength of 296.6 MPa, ultimate tensile strength of 440.6 MPa, and elongation of 27.1%, respectively. © 2024 by the authors.
引用
收藏
相关论文
共 50 条
  • [1] Local microstructure evolution and mechanical performance of friction stir additive manufactured 2195 Al-Li alloy
    Shen, Z.
    Chen, S.
    Cui, L.
    Li, D.
    Liu, X.
    Hou, W.
    Chen, H.
    Sun, Z.
    Li, W. Y.
    MATERIALS CHARACTERIZATION, 2022, 186
  • [2] Microstructure and mechanical properties of Al–Li alloy manufactured by additive friction stir deposition
    Li Y.
    Zhang M.
    Wang H.
    Lai R.
    Yang B.
    Li Y.
    Materials Science and Engineering: A, 2023, 887
  • [3] Microstructure, mechanical and fracture properties of friction stir welded 2195 Al-Li alloy joints
    Guangda SUN
    Weizhao SUN
    Li ZHOU
    Sanfeng LUO
    Zili ZHANG
    Debo LIU
    Huiqiang WU
    Chinese Journal of Aeronautics, 2024, 37 (01) : 345 - 361
  • [4] Microstructure, mechanical and fracture properties of friction stir welded 2195 Al-Li alloy joints
    Sun, Guangda
    Sun, Weizhao
    Zhou, Li
    Luo, Sanfeng
    Zhang, Zili
    Liu, Debo
    Wu, Huiqiang
    CHINESE JOURNAL OF AERONAUTICS, 2024, 37 (01) : 345 - 361
  • [5] Microstructure and mechanical properties of 2195 Al-Li alloy via friction stir additive manufacturing with different stirring paths
    Chen, Liubing
    Jiang, Tao
    Li, Jun
    Guo, Yanhua
    Dai, Guoqing
    Sun, Zhonggang
    Zhan, Lihua
    Liu, Chunhui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1008
  • [6] Microstructure evolution and mechanical properties of 2060 Al-Li alloy via friction stir additive manufacturing
    Jiang, Tao
    Jiao, Tao
    Dai, Guoqing
    Shen, Zhikang
    Guo, Yanhua
    Sun, Zhonggang
    Li, Wenya
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 935
  • [7] Effect of microstructure evolution on corrosion behavior of 2195 Al-Li alloy friction stir welding joint
    Deng, Chengmin
    Wang, Caimei
    Wang, Feifan
    Song, Baoyong
    Zhang, Hua
    MATERIALS CHARACTERIZATION, 2022, 184
  • [8] The evolution of precipitation and microstructure in friction stir welded 2195-T8 Al-Li alloy
    Qin, Hailong
    Zhang, Hua
    Wu, Huiqiang
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 626 : 322 - 329
  • [9] Effect of Friction Stir Welding Parameters on Mechanical Properties and Microstructure of AA2195 Al-Li Alloy Welds
    Muthumanickam, Agilan
    Gandham, Phanikumar
    Dhenuvakonda, Sivakumar
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2019, 72 (06) : 1557 - 1561
  • [10] Microstructure evolution and mechanical properties of ultrafine-grained Al-Li alloy fabricated via friction stir additive manufacturing
    Jiang, Tao
    Zhang, Mingtao
    Dai, Guoqing
    Shen, Zhikang
    Guo, Yanhua
    Sun, Zhonggang
    Li, Wenya
    MATERIALS CHARACTERIZATION, 2024, 209