Non-uniqueness and multi-shock solutions for transonic nozzle flows

被引:0
|
作者
Smith, David H. [1 ]
机构
[1] 307 EOP, DSTO Edinburgh, P.O. Box 1500, Edinburgh, SA 5111, Australia
关键词
Non-uniqueness for steady inviscid nozzle flows with supersonic inlet and subsonic exit conditions is studied via pseudo-arclength continuation coupled to the discrete flow equations. An interplay between geometry; boundary conditions and bifurcation behaviour is examined; including solutions with one or two shocks. © The Author 2005. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
页码:120 / 132
相关论文
共 50 条
  • [1] Non-uniqueness and multi-shock solutions for transonic nozzle flows
    Smith, DH
    IMA JOURNAL OF APPLIED MATHEMATICS, 2006, 71 (01) : 120 - 132
  • [2] NON-UNIQUENESS OF TRANSONIC SHOCK SOLUTIONS TO NON-ISENTROPIC EULER-POISSON SYSTEM
    Duan, Ben
    Zhang, Na
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2021, 19 (04) : 903 - 917
  • [3] NON-UNIQUENESS OF TRANSONIC SHOCK SOLUTIONS TO EULER-POISSON SYSTEM WITH VARYING BACKGROUND CHARGES
    Duan, Ben
    Xing, Yuanyuan
    Zheng, Haoran
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2024, 22 (03) : 777 - 788
  • [4] Non-uniqueness of transonic shock solutions to non-isentropic Euler–Poisson system with varying background charges
    Haoran Zheng
    Yongkui Zou
    Jianqiao Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [5] Non-uniqueness of transonic shock solutions to non-isentropic Euler-Poisson system with varying background charges
    Zheng, Haoran
    Zou, Yongkui
    Zhang, Jianqiao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (01):
  • [6] NON-UNIQUENESS IN PLANE FLUID FLOWS
    Gimperlein, Heiko
    Grinfeld, Michael
    Knops, Robin J.
    Slemrod, Marshall
    QUARTERLY OF APPLIED MATHEMATICS, 2024, 82 (03) : 535 - 561
  • [7] Non-uniqueness of Transonic Flow past a Flattened Airfoil
    Kuz'min, Alexander G.
    International Journal of Applied Mathematics and Statistics, 2007, 8 (MO7): : 49 - 57
  • [8] Non-uniqueness of Transonic Flow past a Flattened Airfoil
    Kuz'min, Alexander G.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2007, 8 (M07): : 49 - 57
  • [9] Non-uniqueness of solutions in asymptotically self-similar shock reflections
    S. S.-M. Lau-Chapdelaine
    M. I. Radulescu
    Shock Waves, 2013, 23 : 595 - 602
  • [10] Non-uniqueness of solutions in asymptotically self-similar shock reflections
    Lau-Chapdelaine, S. S. -M.
    Radulescu, M. I.
    SHOCK WAVES, 2013, 23 (06) : 595 - 602