Aboveground biomass modeling using simulated Global Ecosystem Dynamics Investigation (GEDI) waveform LiDAR and forest inventories in Amazonian rainforests

被引:0
|
作者
Fareed, Nadeem [1 ]
Numata, Izaya [1 ]
Cochrane, Mark A. [2 ]
Novoa, Sidney [3 ]
Tenneson, Karis [4 ]
Melo, Antonio Willian Flores de [5 ]
da Silva, Sonaira Souza [5 ]
Oliveira, Marcus Vinicio Neves d’ [5 ]
Nicolau, Andrea [4 ]
Zutta, Brian [4 ]
机构
[1] Geospatial Sciences Center of Excellence, Department of Geography and Geospatial Sciences, South Dakota State University, Brookings,SD,57006, United States
[2] University of Maryland Center for Environmental Science, Frostburg,MD, United States
[3] Conservacion Amazonia (ACCA), Peru
[4] Spatial Informatics Group, LLC, Pleasanton,CA, United States
[5] Universidade Federal do Acre, Cruzeiro do Sul, Brazil
基金
美国国家航空航天局;
关键词
Digital elevation model - NASA;
D O I
10.1016/j.foreco.2024.122491
中图分类号
学科分类号
摘要
NASA's Global Ecosystem Dynamics Investigation (GEDI) mission one of the objectives is to estimate global forest aboveground biomass (AGB) using full waveform (WF) LiDAR data. GEDI's relative height (RH) metrics, derived from vertical energy distributions, serve as key predictors in AGB modeling, with energy quantiles ranging from 0 % to 100 %. Despite extensive studies on RH metrics, the selection of optimal RH metrics for AGB estimation remains inconsistent, and using fewer metrics can result in a loss of vertical structural complexity. This study explores the potential of dense sampling of RH metrics (RH5 to RH100, in 5 % increments) to retain forest structural complexity, even across diverse forest regimes. Using noise-free simulated GEDI WF data, we developed machine learning models (Cubist, Random Forest, and XGBoost) to estimate AGB across 174 forest plots in the Brazilian Amazon. Results showed that dense RH sampling outperformed models using fewer recommended RH metrics. Our proposed suite of mean RH (mRH) metrics (R² = 0.71, RMSE = 65.88 Mg/ha, nRMSE = 0.36) – derived at plot level from an extensive suite of RH metrics (RH5 to RH100, in 5 % increments) at sub-plot level, and vertical mean RH (vmRH) RH metrics within the 20 % waveform vertical energy distribution (vmRH20, vmRH40, vmRH60, vmRH80, and vmRH100) approach showed similar performance, at the plot level of an average size of 50 m by 50 m. The single vmRH metrics versus plot-level AGB estimates – vmRH80 consistently gives the best results for all ML models and Ordinary Least Square (OLS) regression with R² ranges from (0.65–0.68), RMSE (53.18 – 70.51) Mg/ha – highest RMSE reported for OLS regression. All model's performances were comparable giving similar RMSE, nRMSE, and coefficient of determination (R²) for derivative RH metrics – mRH and vmRH – compared with the traditional approach of selective RH metrics at GEDI footprint level estimates. The trained model provided AGB estimates at 30 m resolution for entire ALS survey areas of sites (n = 174) in the Brazilian Legal Amazon (BLA) region. Overall, this approach retains GEDI waveform information effectively and offers a scalable solution for regional and potentially global AGB modeling. © 2025 Elsevier B.V.
引用
收藏
相关论文
共 25 条
  • [1] Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission
    Duncanson, Laura
    Kellner, James R.
    Armston, John
    Dubayah, Ralph
    Minor, David M.
    Hancock, Steven
    Healey, Sean P.
    Patterson, Paul L.
    Saarela, Svetlana
    Marselis, Suzanne
    Silva, Carlos E.
    Bruening, Jamis
    Goetz, Scott J.
    Tang, Hao
    Hofton, Michelle
    Blair, Bryan
    Luthcke, Scott
    Fatoyinbo, Lola
    Abernethy, Katharine
    Alonso, Alfonso
    Andersen, Hans-Erik
    Aplin, Paul
    Baker, Timothy R.
    Barbier, Nicolas
    Bastin, Jean Francois
    Biber, Peter
    Boeckx, Pascal
    Bogaert, Jan
    Boschetti, Luigi
    Boucher, Peter Brehm
    Boyd, Doreen S.
    Burslem, David F. R. P.
    Calvo-Rodriguez, Sofia
    Chave, Jerome
    Chazdon, Robin L.
    Clark, David B.
    Clark, Deborah A.
    Cohen, Warren B.
    Coomes, David A.
    Corona, Piermaria
    Cushman, K. C.
    Cutler, Mark E. J.
    Dalling, James W.
    Dalponte, Michele
    Dash, Jonathan
    de-Miguel, Sergio
    Deng, Songqiu
    Ellis, Peter Woods
    Erasmus, Barend
    Fekety, Patrick A.
    REMOTE SENSING OF ENVIRONMENT, 2022, 270
  • [2] The Global Ecosystem Dynamics Investigation (GEDI) Lidar laser transmitter
    Coyle, D. Barry
    Stysley, Paul R.
    Chirag, Furqan L.
    Frese, Erich
    Poulios, Demetrios
    Proceedings of SPIE - The International Society for Optical Engineering, 2019, 11128
  • [3] The Global Ecosystem Dynamics Investigation (GEDI) Lidar Laser Transmitter
    Coyle, D. Barry
    Stysley, Paul R.
    Chiragh, Furqan L.
    Frese, Erich
    Poulios, Demetrios
    INFRARED REMOTE SENSING AND INSTRUMENTATION XXVII, 2019, 11128
  • [4] ALLOMETRIC RELATIONSHIPS BETWEEN ABOVE-GROUND BIOMASS AND LIDAR FULL WAVEFORM MEASUREMENTS - POTENTIAL APPLICATIONS FOR GLOBAL ECOSYSTEM DYNAMICS INVESTIGATION (GEDI) MISSION
    Ni-Meister, Wenge
    Lee, Shihyal
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4999 - 5002
  • [5] Impact of leaf phenology on estimates of aboveground biomass density in a deciduous broadleaf forest from simulated GEDI lidar
    Cushman, K. C.
    Armston, John
    Dubayah, Ralph
    Duncanson, Laura
    Hancock, Steven
    Janik, David
    Kral, Kamil
    Krucek, Martin
    Minor, David M.
    Tang, Hao
    Kellner, James R.
    ENVIRONMENTAL RESEARCH LETTERS, 2023, 18 (06)
  • [6] Laser Production for NASA's Global Ecosystem Dynamics Investigation (GEDI) Lidar
    Stysley, Paul R.
    Coyle, D. Barry
    Clarke, Greg B.
    Frese, Erich
    Blalock, Gordon
    Morey, Peter
    Kay, Richard B.
    Poulios, Demetrios
    Hersh, Michael
    LASER RADAR TECHNOLOGY AND APPLICATIONS XXI, 2016, 9832
  • [7] Quantifying aboveground biomass dynamics from charcoal degradation in Mozambique using GEDI Lidar and Landsat
    Liang, Mengyu
    Duncanson, Laura
    Silva, Julie A.
    Sedano, Fernando
    REMOTE SENSING OF ENVIRONMENT, 2023, 284
  • [8] Laser transmitter development for NASA's Global Ecosystem Dynamics Investigation (GEDI) Lidar
    Coyle, D. Barry
    Stysley, Paul R.
    Poulios, Demetrios
    Clarke, Greg B.
    Kay, Richard B.
    LIDAR REMOTE SENSING FOR ENVIRONMENTAL MONITORING XV, 2015, 9612
  • [9] Assessment of carbon mass in a Mediterranean downy oak ecosystem using airborne lidar and NASA Global Ecosystem Dynamics Investigation (GEDI) data
    Chazette, Maelie
    Chazette, Patrick
    Reiter, Ilja M.
    Shang, Xiaoxia
    Totems, Julien
    Orts, Jean-Philippe
    Xueref-Remy, Irene
    Montes, Nicolas
    BIOGEOSCIENCES, 2024, 21 (14) : 3289 - 3303
  • [10] FOREST STRUCTURE MODELING OF A CONIFEROUS FOREST USING TANDEM-X INSAR AND SIMULATED GEDI LIDAR DATA
    Qi, Wenlu
    Dubayah, Ralph O.
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 914 - 917