Adaptive compressed learning boosts both efficiency and utility of differentially private federated learning

被引:0
|
作者
Li, Min [1 ]
Xiao, Di [1 ]
Chen, Lvjun [1 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Federated learning; Adaptive compressed learning; Differential privacy; High-efficient communication; Compressed sensing; INFERENCE; SECURITY;
D O I
10.1016/j.sigpro.2024.109742
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the federated learning (FL) research field, current research is confronted with several pivotal challenges, e.g., data privacy, model utility and communication efficiency. Furthermore, these challenges are further amplified by statistical data heterogeneous in the FL system. Thus, a novel C ommunication-efficient and U tility- assured G aussian differential privacy-based P ersonalized F ederated A daptive C ompressed L earning method, called CUG-PFACL, is proposed. Specifically, an end-to-end local adaptive compressed learning strategy is designed, including three crucial modules, namely the measurement matrix, the personalized compressed data transformation and the local model. Especially, jointly training the measurement matrix module and the personalized compressed data transformation module can mitigate the inherent statistical heterogeneity while preserving all important characteristics of the compressed private data of each local client, and alleviate the additional heterogeneity induced by Gaussian differential privacy in each global communication round. Numerous experimental simulation and comparisons demonstrate that CUG-PFACL has three notable advantages: data privacy guarantee, enhanced personalized model utility and high-efficient communication.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Compression Boosts Differentially Private Federated Learning
    Kerkouche, Raouf
    Acs, Gergely
    Castelluccia, Claude
    Geneves, Pierre
    2021 IEEE EUROPEAN SYMPOSIUM ON SECURITY AND PRIVACY (EUROS&P 2021), 2021, : 304 - 318
  • [2] Differentially Private Federated Learning With an Adaptive Noise Mechanism
    Xue, Rui
    Xue, Kaiping
    Zhu, Bin
    Luo, Xinyi
    Zhang, Tianwei
    Sun, Qibin
    Lu, Jun
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 74 - 87
  • [3] Differentially private federated learning framework with adaptive clipping
    Wang F.
    Xie M.
    Li Q.
    Wang C.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (04): : 111 - 112
  • [4] Squeezing More Utility via Adaptive Clipping on Differentially Private Gradients in Federated Meta-Learning
    Wang, Ning
    Xiao, Yang
    Chen, Yimin
    Zhang, Ning
    Lou, Wenjing
    Hou, Y. Thomas
    PROCEEDINGS OF THE 38TH ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE, ACSAC 2022, 2022, : 647 - 657
  • [5] Agent-Level Differentially Private Federated Learning via Compressed Model Perturbation
    Guo, Yuanxiong
    Hu, Rui
    Gong, Yanmin
    2022 IEEE CONFERENCE ON COMMUNICATIONS AND NETWORK SECURITY (CNS), 2022, : 127 - 135
  • [6] Hierarchically Fair and Differentially Private Federated Learning in Industrial IoT Based on Compressed Sensing With Adaptive-Thresholding Sparsification
    Tan, Xue
    Xiao, Di
    Huang, Hui
    Wang, Mengdi
    Li, Min
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (12) : 13731 - 13740
  • [7] Differentially Private Federated Learning on Heterogeneous Data
    Noble, Maxence
    Bellet, Aurelien
    Dieuleveut, Aymeric
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [8] Differentially private federated learning with Laplacian smoothing
    Liang, Zhicong
    Wang, Bao
    Gu, Quanquan
    Osher, Stanley
    Yao, Yuan
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2024, 72
  • [9] The Skellam Mechanism for Differentially Private Federated Learning
    Agarwal, Naman
    Kairouz, Peter
    Liu, Ziyu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [10] Towards the Robustness of Differentially Private Federated Learning
    Qi, Tao
    Wang, Huili
    Huang, Yongfeng
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 18, 2024, : 19911 - 19919