A Theoretical Study to Predict the Flexural Strength of Singly and Doubly Reinforced Ultra-High Performance Concrete Beams

被引:0
|
作者
Jabbar A.M. [1 ]
Hasan Q.A. [2 ]
Abdul-Husain Z.A. [2 ]
机构
[1] Civil Engineering Department, College of Engineering, Wasit University
[2] Civil Engineering Department, University of Technology, Baghdad
关键词
Compressive strength; Flexural analysis; Steel fibers; Tensile stress; Uhpc;
D O I
10.25103/jestr.152.13
中图分类号
学科分类号
摘要
Ultra-high performance concrete (UHPC) characterizes by a significant tensile strength that cannot be neglected in structural analysis, besides more than 150 MPa compressive strength, high ductility, durability, and toughness. The available analytical methods for traditional concrete beams disregard the tensile strength and strain-softening behavior in tension and compression; therefore, they are not suitable for analyzing UHPC beams. This paper presents a theoretical study to predict the flexural capacity of UHPC beams based on an analysis method that considers the effect of material properties. Predicting the bending moment in singly and doubly reinforced UHPC beams depends on adopting a simplified tensile and compressive constitutive response of UHPC.The procedure adopts several factors that affect the behavior of UHPC upon loading. Previous factors like volume fraction, shape, length, diameter, and orientation of fibers are considered for estimating the tensile stress and a bending moment of UHPC. In addition, a new factor related to silica fume content is adopted to estimate the bonding force between fibers and the matrix and the tensile stress. Also, the initial tensile strength of UHPC is deemed in the tensile stress equation due to the dual action of fibers on confining the matrix and the bridging effect by transferring the stress upon cracking. The equations are proposed for counting the tensile stress, neutral axis position of the beam section, and bending moment. These equations agree with the experimental results for tensile stress and a bending moment of beams implemented by other researchers. © 2022. School of Science, IHU. All rights reserved.
引用
收藏
页码:91 / 101
页数:10
相关论文
共 50 条
  • [1] Flexural Performance of Lightly Reinforced Concrete Beams with Ultra-High Strength Fiber-Reinforced Concrete (UHSFRC)
    Kang, Su-Tae
    Ryu, Gum-Sung
    Park, Jung-Jun
    Koh, Kyung-Taek
    Kim, Sung-Wook
    ADVANCED SCIENCE LETTERS, 2011, 4 (03) : 1032 - 1038
  • [2] Flexural ductility of prestressed steel reinforced ultra-high strength concrete beams
    Jia, Jinqing
    Meng, Gang
    Feng, Shuo
    Zhu, Weiqing
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2015, 47 (04): : 64 - 70
  • [3] Flexural behavior of reinforced concrete beams strengthened with ultra-high performance fiber reinforced concrete
    Al-Osta, M. A.
    Isa, M. N.
    Baluch, M. H.
    Rahman, M. K.
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 134 : 279 - 296
  • [4] Flexural behavior of hybrid concrete beams reinforced with ultra-high performance concrete bars
    Azad, Abul K.
    Hakeem, Ibrahim Y.
    CONSTRUCTION AND BUILDING MATERIALS, 2013, 49 : 128 - 133
  • [5] Flexural behavior of reinforced concrete beams repaired with ultra-high performance fiber reinforced concrete (UHPFRC)
    Safdar, Muhammad
    Matsumoto, Takashi
    Kakuma, Ko
    COMPOSITE STRUCTURES, 2016, 157 : 448 - 460
  • [6] Experimental and numerical study of the flexural behaviour of ultra-high performance fibre reinforced concrete beams
    Singh, M.
    Sheikh, A. H.
    Ali, M. S. Mohamed
    Visintin, P.
    Griffith, M. C.
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 138 : 12 - 25
  • [7] Experimental study on shear strength of ultra-high performance fiber reinforced concrete beams
    Xu, Haibin, 1600, Chinese Society of Civil Engineering (47):
  • [8] Flexural behavior of ultra high performance concrete beams reinforced with high strength steel
    Wang, Jun-Yan
    Gu, Jin-Ben
    Liu, Chao
    Huang, Yu-Hao
    Xiao, Ru-Cheng
    Ma, Biao
    STRUCTURAL ENGINEERING AND MECHANICS, 2022, 81 (05) : 539 - 550
  • [9] Flexural capacity of steel reinforced ultra-high performance concrete beams with rectangular section
    Lin, Shang-Shun
    Ji, Bang-Chong
    Liu, Jun-Ping
    Lin, lian-Fan
    Zhao, Jin-Bing
    Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering, 2024, 24 (03): : 94 - 109
  • [10] Flexural performance of pretensioned ultra-high performance fibre reinforced concrete beams with CFRP tendons
    Sturm, A. B.
    Visintin, P.
    Seracino, R.
    Lucier, G. W.
    Oehlers, D. J.
    COMPOSITE STRUCTURES, 2020, 243