Accelerating Gaussian bare-bones differential evolution using neighbourhood mutation

被引:0
|
作者
机构
[1] Chen, Liang
[2] Wang, Wenjun
[3] Wang, Hui
来源
Wang, H. (huiwang@whu.edu.cn) | 1600年 / Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland卷 / 04期
关键词
Adaptive parameters - Differential Evolution - GBDE - Neighbourhood - Optimisations;
D O I
10.1504/IJCSM.2013.057256
中图分类号
学科分类号
摘要
Gaussian bare-bones differential evolution (GBDE) is a new DE algorithm which employs Gaussian random sampling to generate mutant vectors. Though this method can maintain population diversity and enhance the global search ability, it may result in slow convergence rate. In this paper, we present an improved GBDE (IGBDE) algorithm by using neighbourhood mutation to accelerate the evolution. Moreover, a modified parameter control method is utilised to adjust the crossover rate (CR). To verify the performance of our approach, 13 well-known benchmark functions are tested in the experiments. Simulationresults show that IGBDE outperforms the original GBDE in terms of solution accuracy andconvergence speed. Copyright © 2013 Inderscience Enterprises Ltd.
引用
收藏
相关论文
共 50 条
  • [1] Accelerating Gaussian bare-bones differential evolution using neighbourhood mutation
    Chen, Liang
    Wang, Wenjun
    Wang, Hui
    [J]. INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2013, 4 (02) : 266 - 276
  • [2] Gaussian Bare-Bones Differential Evolution
    Wang, Hui
    Rahnamayan, Shahryar
    Sun, Hui
    Omran, Mahamed G. H.
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (02) : 634 - 647
  • [3] An adaptive differential evolution algorithm with elite gaussian mutation and bare-bones strategy
    Wu, Lingyu
    Li, Zixu
    Ge, Wanzhen
    Zhao, Xinchao
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (08) : 8537 - 8553
  • [4] Adaptive Bare-bones Differential Evolution Based on Cosine
    余弦适应性骨架差分进化算法
    [J]. Guo, Zhaolu (gzl@whu.edu.cn), 1600, Sichuan University (52): : 180 - 191
  • [5] Bare-bones differential evolution algorithm based on trigonometry
    Peng, Hu
    Wu, Zhijian
    Zhou, Xinyu
    Deng, Changshou
    [J]. Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2015, 52 (12): : 2776 - 2788
  • [6] Gaussian bare-bones firefly algorithm
    Peng, Hu
    Peng, Shunxu
    [J]. International Journal of Innovative Computing and Applications, 2019, 10 (01) : 35 - 42
  • [7] A Scalability Test of Gaussian Bare-Bones Differential Evolution on High-Dimensional Optimization Problems
    Wang, Hui
    Xiao, Zhengwang
    Zhang, Yunhui
    Liao, Xiaowu
    Ruan, Yiping
    Fu, Jingjiu
    Jiang, Dazhi
    [J]. 2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 374 - 378
  • [8] Gaussian bare-bones artificial bee colony algorithm
    Xinyu Zhou
    Zhijian Wu
    Hui Wang
    Shahryar Rahnamayan
    [J]. Soft Computing, 2016, 20 : 907 - 924
  • [9] Gaussian Bare-Bones Brain Storm Optimization Algorithm
    El-Abd, Mohammed
    [J]. 2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 227 - 233
  • [10] Learning Multimodal Parameters: A Bare-Bones Niching Differential Evolution Approach
    Gong, Yue-Jiao
    Zhang, Jun
    Zhou, Yicong
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (07) : 2944 - 2959