Simulation of non-linear viscoelastic material behavior of plastics with the 3D deformation model

被引:0
|
作者
Michaeli, W. [1 ]
Brandt, Marcel [1 ]
Brinkmann, Markus [1 ]
Schmachtenberg, Ernst [2 ]
机构
[1] RWTH Aachen, Institut für Kunststoffverarbeitung, Pontstr. 49, D-52062 Aachen, Germany
[2] Universität Erlangen-Nürnberg, Am Weichselgarten 9, D-91058 Erlangen, Germany
关键词
33;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] MATERIAL FUNCTIONS OF CREEP OF NON-LINEAR VISCOELASTIC ANISOTROPIC PLASTICS
    OCHELSKI, S
    ARCHIVES OF MECHANICS, 1979, 31 (05): : 657 - 678
  • [2] Parameter fitting for a non-linear viscoelastic material model
    Gotlih, K
    MAGIC WORLD OF TEXTILES, BOOK OF PROCEEDINGS, 2002, : 476 - 481
  • [3] A non-linear viscoelastic material constitutive model for polyurea
    Gamonpilas, C.
    McCuiston, R.
    POLYMER, 2012, 53 (17) : 3655 - 3658
  • [4] STOCHASTIC DAMAGE MODEL FOR NON-LINEAR VISCOELASTIC MATERIAL
    SITZER, MR
    FORSCHUNG IM INGENIEURWESEN-ENGINEERING RESEARCH, 1984, 50 (05): : 148 - 148
  • [5] FORMULATION OF SHELL EQUATIONS FOR NON-LINEAR, VISCOELASTIC MATERIAL BEHAVIOR
    SCHLIEKMANN, C
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1981, 61 (4BIS): : T123 - T125
  • [6] A model for the non-linear viscoelastic behavior of amorphous polymers
    Zhang, Y
    Huang, ZP
    MECHANICS RESEARCH COMMUNICATIONS, 2004, 31 (02) : 195 - 202
  • [7] Simulation of non-linear viscoelastic flow behavior in the Buss Kneader
    Lyu, MY
    White, JL
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2000, 19 (10) : 756 - 791
  • [8] 3D non-linear behavior of masonry arch bridges
    Milani, Gabriele
    Lourenco, Paulo B.
    COMPUTERS & STRUCTURES, 2012, 110 : 133 - 150
  • [9] Non-linear viscoelastic behavior of polymer melts interpreted by fractional viscoelastic model
    Di Lorenzo, Salvatore
    Di Paola, Mario
    La Mantia, Francesco Paolo
    Pirrotta, Antonina
    MECCANICA, 2017, 52 (08) : 1843 - 1850
  • [10] Non-linear viscoelastic behavior of polymer melts interpreted by fractional viscoelastic model
    Salvatore Di Lorenzo
    Mario Di Paola
    Francesco Paolo La Mantia
    Antonina Pirrotta
    Meccanica, 2017, 52 : 1843 - 1850