Static and dynamic simulation of a physically-based model of silicon carbide PiN diode

被引:0
|
作者
Hernández L. [1 ]
Arzate G. [1 ]
Brito Z. [1 ]
Rodríguez M. [2 ]
机构
[1] ESIME-C Del IPN, Col. San Fco. Culhuacan
[2] Universidad Autónoma Del Carmen, Ciudad del Carmen, Campeche
来源
Informacion Tecnologica | 2010年 / 21卷 / 05期
关键词
Modelling; PiN diode; Silicon carbide; Simulation;
D O I
10.1612/inf.tecnol.4387it.09
中图分类号
学科分类号
摘要
This paper presents a method to solve the ambipolar diffusion equation for modeling and simulating the PiN diode in silicon carbide, using an empirical approximation. Through this methodology a set of differential equations that simulate the main physical phenomena associated to the power semiconductor device are obtained. The equations, implemented in Pspice, model in a more actual form the charges behaviour in the N- region of a PiN diode in silicon carbide for the static and dynamic phases. For the verification and validation of the model, the simulation results were compared with experimental data reported in the literature, obtaining accurate results for application in power electronic.
引用
收藏
页码:45 / 50
页数:5
相关论文
共 50 条
  • [1] Silicon Carbide PiN Physically-Based Model Implemented in the Pspice Circuit Simulator
    Gonzalez, L. H.
    Claudio, A.
    Rodriguez, M. A.
    Ponce, M.
    Rosales, P.
    Zuniga-I, C.
    EPE: 2009 13TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS, VOLS 1-9, 2009, : 3777 - +
  • [2] New physically-based PiN diode compact model for circuit modelling applications
    Igic, PM
    Mawby, PA
    Towers, MS
    Batcup, S
    IEE PROCEEDINGS-CIRCUITS DEVICES AND SYSTEMS, 2002, 149 (04): : 257 - 263
  • [3] A physically-based model for oxidation in a circular trench in silicon
    Xu, Y.
    Sudhama, C.
    Hong, S.
    Sellers, J. A.
    Ambadi, S.
    Kamekona, K.
    Averett, G.
    Ruiz, B.
    Wan, I.
    Cai, W.
    Wu, Y.
    Costa, J. C.
    Davies, R. B.
    ICCN 2002: INTERNATIONAL CONFERENCE ON COMPUTATIONAL NANOSCIENCE AND NANOTECHNOLOGY, 2002, : 352 - 355
  • [4] Physically-Based Simulation of Rainbows
    Sadeghi, Iman
    Munoz, Adolfo
    Laven, Philip
    Jarosz, Wojciech
    Seron, Francisco
    Gutierrez, Diego
    Jensen, Henrik Wann
    ACM TRANSACTIONS ON GRAPHICS, 2012, 31 (01):
  • [5] Silicon carbide PIN diode for tritium detection
    Eymeoud, Paul
    Biondo, Stephane
    Vervisch, Vanessa
    Ottaviani, Laurent
    Grillet, Nadia
    Roussel, Luc
    Coulie, Karine
    Palais, Olivier
    Darreon, Julien
    Vervisch, Wilfried
    VACUUM, 2024, 230
  • [6] A physically based diode model for circuit simulation
    Khachroumi, Sofiane
    Amouri, Aymen
    Ben Salah, Tarek
    Morel, Herve
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2013, 26 (03) : 295 - 306
  • [7] An Interactive Physically-based Model for Active Suction Phenomenon Simulation
    Bernardin, Antonin
    Duriez, Christian
    Marchal, Maud
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 1466 - 1471
  • [8] A physically-based, quasilinear viscoelasticity model for the dynamic response of polyurea
    Clifton, Rodney J.
    Wang, Xinjie
    Jiao, Tong
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2016, 93 : 8 - 15
  • [9] A physically-based dynamic model for solid oxide fuel cells
    Wang, Caisheng
    Nehrir, Hashem
    2007 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-10, 2007, : 2274 - 2274
  • [10] Physically-based simulation of twilight phenomena
    Haber, J
    Magnor, M
    Seidel, HP
    ACM TRANSACTIONS ON GRAPHICS, 2005, 24 (04): : 1353 - 1373