New Eigenvalue Bound for the Fractional Chromatic Number

被引:0
|
作者
Guo, Krystal [1 ]
Spiro, Sam [2 ]
机构
[1] Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, Netherlands
[2] Dept. of Mathematics, Rutgers University, Piscataway,NJ, United States
来源
arXiv | 2022年
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Eigenvalues and eigenfunctions
引用
收藏
相关论文
共 50 条
  • [1] New eigenvalue bound for the fractional chromatic number
    Guo, Krystal
    Spiro, Sam
    JOURNAL OF GRAPH THEORY, 2024, 106 (01) : 167 - 181
  • [2] A new bound on the cyclic chromatic number
    Sanders, DP
    Zhao, Y
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 83 (01) : 102 - 111
  • [3] The performance of an upper bound on the fractional chromatic number of weighted graphs
    Ganesan, Ashwin
    APPLIED MATHEMATICS LETTERS, 2010, 23 (05) : 597 - 599
  • [4] A new upper bound on the cyclic chromatic number
    Borodin, O. V.
    Broersma, H. J.
    Glebov, A.
    van den Heuvel, J.
    JOURNAL OF GRAPH THEORY, 2007, 54 (01) : 58 - 72
  • [5] A NEW UPPER BOUND FOR THE LIST CHROMATIC NUMBER
    BOLLOBAS, B
    HIND, HR
    DISCRETE MATHEMATICS, 1989, 74 (1-2) : 65 - 75
  • [6] A new upper bound for the harmonious chromatic number
    Edwards, K
    JOURNAL OF GRAPH THEORY, 1998, 29 (04) : 257 - 261
  • [7] A new bound on the acyclic edge chromatic number
    Fialho, Paula M. S.
    de Lima, Bernardo N. B.
    Procacci, Aldo
    DISCRETE MATHEMATICS, 2020, 343 (11)
  • [8] On the fractional chromatic number, the chromatic number, and graph products
    Klavzar, S
    Yeh, HG
    DISCRETE MATHEMATICS, 2002, 247 (1-3) : 235 - 242
  • [9] A new lower bound for the chromatic number of the rational space
    Ponomarenko, E. I.
    Raigorodskii, A. M.
    RUSSIAN MATHEMATICAL SURVEYS, 2013, 68 (05) : 960 - 962
  • [10] The chromatic number and the least eigenvalue of a graph
    Fan, Yi-Zheng
    Yu, Gui-Dong
    Wang, Yi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):