In recent years, with the development of technology and the advancement of smart wearable technology, flexible wearable electronic products have attracted the attention of researchers due to their excellent performance and flexibility. As an important branch of flexible wearable electro-nic products, flexible strain/pressure sensors can be attached to the human body or integrated into textiles, and having great application potential in the fields of healthcare, human-computer interaction and soft robots. Strain/pressure sensors are a type of electronic device that converts external stimuli or mechanical deformations (such as tension and compression) into electrical signals. The sensing element is the key to strain/pressure sensors. Abandoning traditional strain/pressure sensor based on rigid materials, new materials and structures have been developed for the flexible strain/pressure sensors in recent years, including metal nanomaterials, conductive polymers and carbon nanomaterials (such as graphene, carbon nanotubes and carbon black materials). These new materials significantly improve the mechanical properties and flexibility of sensors. However, the complicated preparation process, high material cost and unknown toxicity limit the large-scale application of these sensors, and the sensing performance needs to be further improved. There are abundant biological materials in nature, and many biological materials have been used in electronic fields, such as supercapacitors, batteries and sensors. Natural biomaterial derived materials have the advantages of low cost, easy access, sustainability and eco-friendliness, making them attractive in the direction of flexible strain/pressure sensors. This paper reviewes the research progress of flexible strain/pressure sensors based on biomaterial derived material. The sensors are divided into three types, including the flexible strain/pressure sensors based on carbonized biomaterial, the flexible strain/pressure sensors based on 3D sponge material and the flexible strain/pressure sensors based on fabric substrate material. And their characteristics, advantages and disadvantages in materials and preparation processes are summarized by examples. Based on this, the application examples of biomaterial derived material based sensors in human health detection and real-time motion monitoring are discussed, and the current challenges are proposed to provide reference for the development and application of flexible strain/pressure sensors. © 2020, Materials Review Magazine. All right reserved.