Learning to rank deep web

被引:0
|
作者
The Institute of Intelligent Information Processing and Application, Soochow University, Suzhou 215006, China [1 ]
不详 [2 ]
机构
来源
J. Inf. Comput. Sci. | 2009年 / 2卷 / 925-931期
关键词
Query processing;
D O I
暂无
中图分类号
G252.7 [文献检索]; G354 [情报检索];
学科分类号
摘要
With the fast advance of Deep Web, data sources selection according to database quality is crucial in Deep Web integration. In this paper, we exploit some features (such as capability of query interface, quality of interface pages etc) to learn to rank Deep Web through SVM and Ranking SVM. Otherwise, the feedback mechanism makes our ranking function more precision in ranking Deep Web. Experimental results show that our features are beneficial to estimate the quality of data sources, and the learned ranking function outperforms other existing data sources selection method which ranked the databases based on their desirability with respect to the query. Copyright ©2009 Binary Information Press.
引用
收藏
相关论文
共 50 条
  • [1] Deep Metric Learning to Rank
    Cakir, Fatih
    He, Kun
    Xia, Xide
    Kulis, Brian
    Sclaroff, Stan
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1861 - 1870
  • [2] Web spam detection with learning to rank
    Liu, Yang
    Zhang, Huaxiang
    Liu, Li
    Journal of Computational Information Systems, 2013, 9 (24): : 10005 - 10012
  • [3] Deep Learning for the Web
    Jung, Kyomin
    Zhang, Byoung-Tak
    Mitra, Prasenjit
    WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, 2015, : 1525 - 1526
  • [4] Learning to Rank with Deep Autoencoder Features
    Albuquerque, Alberto
    Amador, Tiago
    Ferreira, Renato
    Veloso, Adriano
    Ziviani, Nivio
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018, : 814 - 821
  • [5] Deep Rank Learning for Facial Attractiveness
    Liao, Yanbing
    Deng, Weihong
    PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, : 565 - 570
  • [6] Learning to rank related entities in Web search
    Kang, Changsung
    Yin, Dawei
    Zhang, Ruiqiang
    Torzec, Nicolas
    He, Jianzhang
    Chang, Yi
    NEUROCOMPUTING, 2015, 166 : 309 - 318
  • [7] The whens and hows of learning to rank for web search
    Craig Macdonald
    Rodrygo L. T. Santos
    Iadh Ounis
    Information Retrieval, 2013, 16 : 584 - 628
  • [8] The whens and hows of learning to rank for web search
    Macdonald, Craig
    Santos, Rodrygo L. T.
    Ounis, Iadh
    INFORMATION RETRIEVAL, 2013, 16 (05): : 584 - 628
  • [9] Learning to crawl deep web
    Zheng, Qinghua
    Wu, Zhaohui
    Cheng, Xiaocheng
    Jiang, Lu
    Liu, Jun
    INFORMATION SYSTEMS, 2013, 38 (06) : 801 - 819
  • [10] Deep versus Shallow Judgments in Learning to Rank
    Yilmaz, Emine
    Robertson, Stephen
    PROCEEDINGS 32ND ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2009, : 662 - 663