Production data as enabler for Industrie 4.0

被引:0
|
作者
Schuh, G. [1 ]
Nyhuis, P. [2 ]
Reuter, C. [1 ]
Hauptvogel, A. [1 ]
Schmitz, S. [1 ]
Nywlt, J. [2 ]
Brambring, F. [1 ]
Schulte, F. [1 ]
Hansen, J. [1 ]
机构
[1] Werkzeugmaschinenlabor WZL, RWTH Aachen, Steinbachstr. 19, Aachen,D-52074, Germany
[2] Institut für Fabrikanlagen und Logistik, Produktionstechnisches Zentrum Hannover, Leibniz Universität Hannover, An der Universität 2, Garbsen,D-30823, Germany
来源
WT Werkstattstechnik | 2015年 / 105卷 / 04期
关键词
Investments - Production control;
D O I
暂无
中图分类号
学科分类号
摘要
In Industrie 4.0, up-to-date production-related data and efficient data acquisition processes are of paramount importance. Therefore, the four leading German institutes of production technology in the field of production planning and control have conducted a survey in order to explore the state of the art and necessary research fields. In particular small and medium sized enterprises need to consider IT investments for taking advantage of production-related data in Industrie 4.0.
引用
收藏
页码:200 / 203
相关论文
共 50 条
  • [1] A fundamental approach for data acquisition on machine tools as enabler for analytical Industrie 4.0 applications
    Gittler, Thomas
    Gontarz, Adam
    Weiss, Lukas
    Wegener, Konrad
    12TH CIRP CONFERENCE ON INTELLIGENT COMPUTATION IN MANUFACTURING ENGINEERING, 2019, 79 : 586 - 591
  • [2] Data Processing in Industrie 4.0Data Analysis and Knowledge Management in Industrie 4.0
    Frank Werner
    Robert Woitsch
    Datenbank-Spektrum, 2018, 18 (1) : 15 - 25
  • [3] Learning factories' trainings as an enabler of proactive workers' participation regarding Industrie 4.0
    Reuter, Melissa
    Oberc, Henning
    Wannoeffel, Manfred
    Kreimeier, Dieter
    Klippert, Juergen
    Pawlicki, Peter
    Kuhlenkoetter, Bernd
    7TH CONFERENCE ON LEARNING FACTORIES (CLF 2017), 2017, 9 : 354 - 360
  • [4] 5G as Enabler for Industrie 4.0 Use Cases: Challenges and Concepts
    Gundall, Michael
    Schneider, Joerg
    Schotten, Hans D.
    Aleksy, Markus
    Schulz, Dirk
    Franchi, Norman
    Schwarzenberg, Nick
    Markwart, Christian
    Halfmann, Ruediger
    Rost, Peter
    Wuebben, Dirk
    Neumann, Arne
    Duengen, Monique
    Neugebauer, Thomas
    Blunk, Rolf
    Kus, Mehmet
    Griessbach, Jan
    2018 IEEE 23RD INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2018, : 1401 - 1408
  • [5] Hypotheses for a Theory of Production in the Context of Industrie 4.0
    Schuh, Guenther
    Reuter, Christina
    Hauptvogel, Annika
    Doelle, Christian
    ADVANCES IN PRODUCTION TECHNOLOGY, 2015, : 11 - 23
  • [6] Effiziente fabrik 4.0 - specification of industrie 4.0 for practical production environments
    Abele, Eberhard
    Anderl, Reiner
    Metternich, Joachim
    Wank, Andreas
    Anokhin, Oleg
    Arndt, Alexander
    Meudt, Tobias
    Sauer, Markus
    ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 2015, 110 (03): : 150 - 153
  • [7] Decentralized Data Analytics for Maintenance in Industrie 4.0
    Uhlmann, Eckart
    Laghmouchi, Abdelhakim
    Geisert, Claudio
    Hohwieler, Eckhard
    27TH INTERNATIONAL CONFERENCE ON FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING, FAIM2017, 2017, 11 : 1120 - 1126
  • [8] An Analysis of the Impact of Industrie 4.0 on Production Planning and Control
    Dombrowski, Uwe
    Dix, Yannick
    ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS: SMART MANUFACTURING FOR INDUSTRY 4.0, APMS 2018, 2018, 536 : 114 - 121
  • [9] Industrie 4.0 in production ramp-up management
    Dombrowski, Uwe
    Wullbrandt, Jonas
    Krenkel, Philipp
    28TH INTERNATIONAL CONFERENCE ON FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING (FAIM2018): GLOBAL INTEGRATION OF INTELLIGENT MANUFACTURING AND SMART INDUSTRY FOR GOOD OF HUMANITY, 2018, 17 : 1015 - 1022
  • [10] The Lean Production System 4.0 Framework - Enhancing Lean Methods by Industrie 4.0
    Dombrowski, Uwe
    Richter, Thomas
    ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS: SMART MANUFACTURING FOR INDUSTRY 4.0, APMS 2018, 2018, 536 : 410 - 416