Many-body localization crossover is sharper in a quasiperiodic potential

被引:0
|
作者
Falcao, Pedro R. Nicacio [1 ,2 ]
Aramthottil, Adith Sai [1 ,2 ]
Sierant, Piotr [3 ]
Zakrzewski, Jakub [2 ,4 ]
机构
[1] Uniwersytet Jagiellonski, Szkola Doktorska Nauk Sci & Przyrodniczych, Lojasiewicza 11, PL-30348 Krakow, Poland
[2] Uniwersytet Jagiellonski, Inst Fizyki Teoretycznej, Wydzial Fizyki Astron & Informatyki Stosowane, Lojasiewicza 11, PL-30348 Krakow, Poland
[3] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Av Carl Friedrich Gauss 3, Castelldefels 08860, Barcelona, Spain
[4] Uniwersytet Jagiellonski, Mark Kac Complex Syst Res Ctr, PL-30348 Krakow, Poland
关键词
STATISTICAL-MECHANICS; THERMALIZATION; CHAOS;
D O I
10.1103/PhysRevB.110.184209
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Strong disorder may significantly slow down or even completely hinder the thermalization of quantum many-body systems due to many-body localization (MBL). A sufficiently deep quasiperiodic potential may also inhibit thermalization. In this paper, we numerically demonstrate direct differences in the behavior of standard ergodicity-breaking indicators at the MBL crossover in random and quasiperiodic systems. Our key finding is the exponential increase in the sharpness of the MBL crossover with system size for quasiperiodic systems, a trend that is only linear in disordered systems. The strong tendency towards nonanalytic behavior in quasiperiodic systems is consistent with the existence of dynamical regimes with sharply defined boundaries or an MBL phase transition. It highlights the importance of quasiperiodic systems for our understanding of many-body dynamics.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Many-body localization with quasiperiodic driving
    Long, David M.
    Crowley, Philip J. D.
    Chandran, Anushya
    PHYSICAL REVIEW B, 2022, 105 (14)
  • [2] Many-body localization in a quasiperiodic system
    Iyer, Shankar
    Oganesyan, Vadim
    Refael, Gil
    Huse, David A.
    PHYSICAL REVIEW B, 2013, 87 (13)
  • [3] Many-body localization in a quasiperiodic Fibonacci chain
    Mace, Nicolas
    Laflorencie, Nicolas
    Alet, Fabien
    SCIPOST PHYSICS, 2019, 6 (04):
  • [4] Localization, multifractality, and many-body localization in periodically kicked quasiperiodic lattices
    Zhang, Yu
    Zhou, Bozhen
    Hu, Haiping
    Chen, Shu
    PHYSICAL REVIEW B, 2022, 106 (05)
  • [5] Many-body dynamical phase transition in a quasiperiodic potential
    Modak, Ranjan
    Rakshit, Debraj
    PHYSICAL REVIEW B, 2021, 103 (22)
  • [6] Many-body localization in a non-Hermitian quasiperiodic system
    Zhai, Liang-Jun
    Yin, Shuai
    Huang, Guang-Yao
    PHYSICAL REVIEW B, 2020, 102 (06)
  • [7] Many-body localization in spin chain systems with quasiperiodic fields
    Lee, Mac
    Look, Thomas R.
    Lim, S. P.
    Sheng, D. N.
    PHYSICAL REVIEW B, 2017, 96 (07)
  • [8] Local integrals of motion and the quasiperiodic many-body localization transition
    Singh, Hansveer
    Ware, Brayden
    Vasseur, Romain
    Gopalakrishnan, Sarang
    PHYSICAL REVIEW B, 2021, 103 (22)
  • [9] Universal Properties of Many-Body Localization Transitions in Quasiperiodic Systems
    Zhang, Shi-Xin
    Yao, Hong
    PHYSICAL REVIEW LETTERS, 2018, 121 (20)
  • [10] Quasiperiodic many-body localization transition in dimension d > 1
    Agrawal, Utkarsh
    Vasseur, Romain
    Gopalakrishnan, Sarang
    PHYSICAL REVIEW B, 2022, 106 (09)