Urea solvothermal regeneration of spent LiNi0.5Co0.2Mn0.3O2: Performance and environmental benefits

被引:1
|
作者
Zhao, Pengcheng [1 ]
Li, Yao [2 ]
Wang, Xiaoyu [1 ]
Liu, Xiaoman [1 ]
Gao, Pei [1 ]
Guo, Peng [2 ]
Wang, Xiaoxiang [2 ]
Wu, Chunfei [3 ]
Shen, Boxiong [1 ]
机构
[1] Hebei Univ Technol, Hebei Engn Res Ctr Pollut Control Power Syst, Sch Energy & Environm Engn, Tianjin Key Lab Clean Energy & Pollut Control, Tianjin 300131, Peoples R China
[2] Hebei Univ Technol, Sch Chem Engn & Technol, Tianjin 300131, Peoples R China
[3] Queens Univ Belfast, Sch Chem & Chem Engn, Belfast BT7 1NN, North Ireland
关键词
Lithium-ion battery; Regeneration; Urea solvothermal; Cathode material;
D O I
10.1016/j.seppur.2024.129988
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
With the large-scale application of power batteries, a large number of spent lithium-ion batteries (LIBs) will be formed in recent years. The improper disposal of spent LIBs will pose significant environmental pollution. LiNi0.5Co0.2Mn0.3O2 (NCM), as a typical type of LIBs cathodes material, are widely used and can be highly recycled. However, the existing hydrometallurgical and pyrometallurgical recycling processes consume large amounts of energy and introduce serious secondary pollution. This work presents a simple straightforward direct regeneration process that uses urea solvothermal treatment followed by calcination to obtain urea-regenerated spent NCM (UR-S-NCM). Surprisingly, the specific capacity of the regenerated NCM of UR-S-NCM recovers completely and reaches 166 mAh/g, higher than that of fresh NCM (F-NCM) at 156 mAh/g. After 100 charge/ discharge cycles, the specific capacity of UR-S-NCM is 37 % higher than that of F-NCM at the same condition. Additionally, the CO2 emissions per kilogram of the regenerated UR-S-NCM are only 1.79 kg, about 31 % of pyrometallurgy and 48 % of hydrometallurgy, respectively. The surface smoothness, grain boundaries and layered structure of UR-S-NCM are recovered from S-NCM to the same situation of F-NCM. Smooth surface facilitates Li+ migration into and out of UR-S-NCM, grain boundaries reduction diminishes electrolyte corrosion, and the layered structure accommodates more Li+ compared to the spinel structure of S-NCM. This work provides an eco-friendly direct regeneration process and offers a new insight for LIBs regeneration.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Regeneration of degraded LiNi0.5Co0.2Mn0.3O2 from spent lithium ion batteries
    Yue, Ling-Ping
    Lou, Ping
    Xu, Guo-Hua
    Xu, Huiqiang
    Jin, Guoliang
    Li, Long
    Deng, Heming
    Cheng, Qi
    Tang, Shun
    Cao, Yuan-Cheng
    IONICS, 2020, 26 (06) : 2757 - 2761
  • [2] Regeneration of degraded LiNi0.5Co0.2Mn0.3O2 from spent lithium ion batteries
    Ling-Ping Yue
    Ping Lou
    Guo-Hua Xu
    Huiqiang Xu
    Guoliang Jin
    Long Li
    Heming Deng
    Qi Cheng
    Shun Tang
    Yuan-Cheng Cao
    Ionics, 2020, 26 : 2757 - 2761
  • [3] Regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries
    Zhou, Hongming
    Zhao, Xiuxiu
    Yin, Chengjie
    Li, Jian
    ELECTROCHIMICA ACTA, 2018, 291 : 142 - 150
  • [4] Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries
    Tang, Xiaodong
    Guo, Qiankun
    Zhou, Miaomiao
    Zhong, Shengwen
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2021, 40 : 278 - 286
  • [5] Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries
    Xiaodong Tang
    Qiankun Guo
    Miaomiao Zhou
    Shengwen Zhong
    Chinese Journal of Chemical Engineering, 2021, 40 (12) : 278 - 286
  • [6] A Ternary Molten Salt Approach for Direct Regeneration of LiNi0.5Co0.2Mn0.3O2 Cathode
    Qin, Zuoyu
    Wen, Zuxin
    Xu, Yifei
    Zheng, Zhicheng
    Bai, Mingliang
    Zhang, Ning
    Jia, Chuankun
    Wu, Hao Bin
    Chen, Gen
    SMALL, 2022, 18 (43)
  • [7] Study on recycling waste LiNi0.5Co0.2Mn0.3O2 materials
    Zou, Chao
    Liu, Wei Qiao
    Pan, Jun Li
    Liu, Huan
    Liu, Yu
    Zhou, Quan Fa
    FERROELECTRICS, 2019, 549 (01) : 153 - 159
  • [8] To Enhance the Performance of LiNi0.5Co0.2Mn0.3O2 Aqueous Electrodes by the Coating Process
    Jiang, Wenchang
    Jiang, Yilan
    Huang, Chun
    ACS OMEGA, 2024, 9 (19): : 21006 - 21015
  • [9] Effect of high temperature environment on the performance of LiNi0.5Co0.2Mn0.3O2 battery
    Situ, Wenfu
    Yang, Xiaoqing
    Li, Xinxi
    Zhang, Guoqing
    Rao, Mumin
    Wei, Chao
    Huang, Zhi
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 104 : 743 - 748
  • [10] The impact of vanadium substitution on the structure and electrochemical performance of LiNi0.5Co0.2Mn0.3O2
    Zhu, Huali
    Xie, Tian
    Chen, Zhaoyong
    Li, Lingjun
    Xu, Ming
    Wang, Wenhua
    Lai, Yanqing
    Li, Jie
    ELECTROCHIMICA ACTA, 2014, 135 : 77 - 85