Effect of Rotational Speed on Microstructure and Properties of Al-Based Composite Reinforced with High-Entropy-Alloy Particles Fabricated by Friction Stir Processing

被引:0
|
作者
Zhang, Xiaolong [1 ]
Li, Hui [1 ]
Jiao, Lei [2 ]
Wang, Gonglin [1 ]
Wang, Xinyao [1 ]
Zhang, Cheng [1 ]
Shen, Weiming [1 ]
Shcheretskyi, Oleksandr [3 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Mat Sci & Engn, Zhenjiang 212000, Peoples R China
[2] Sch Mat Sci & Engn, Zhenjiang 212000, Peoples R China
[3] Natl Acad Sci Ukraine, Phis Technol Inst Met & Alloys, UA-01001 Kyiv, Ukraine
基金
中国国家自然科学基金;
关键词
aluminum matrix composites; high-entropy alloys; mechanical properties; microstructures; stir friction processings; ALUMINUM-MATRIX COMPOSITES; MECHANICAL-PROPERTIES; WEAR BEHAVIOR; WC;
D O I
10.1002/adem.202401417
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present investigation, the production of composites based on 7075Al is involved, reinforced with particles of high-entropy alloy (AlCoCrFeNi), using the friction stir processing (FSP) technique. The primary objective is to examine how varying the rotational speed during processing affects the uniformity of the composite microstructure, the strength of the bonding between different materials, and the mechanical properties of the composite. In these findings, it is indicated that higher processing rotational speeds lead to enhanced homogeneity of the composite material and promote strong bonding with the matrix. The Al13Co4 phase is generated at the interface before the formation of the Al5Co2 phase. The microhardness of the composites exhibits an increase in hardness of 78%, 84%, 86%, and 83% compared to the hardness of the 7075Al. Similarly, the tensile strength is enhanced by 26%, 36.7%, 49%, and 40%, respectively. The broken surface shows an even spread of particles with many small depressions, which is a clear sign of a common type of fracture that can stretch without breaking. The primary processes that enhance the strength of the FeCoNiCrAl/7075Al composite manufactured by FSP include the load-transfer effect, dispersion strengthening, grain refinement strengthening, and thermal mismatch strengthening.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Effect of Rotational Speed on Microstructure and Mechanical Properties of Refill Friction Stir Spot Welded 2024 Al Alloy
    Li, Zhengwei
    Gao, Shuangsheng
    Ji, Shude
    Yue, Yumei
    Chai, Peng
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2016, 25 (04) : 1673 - 1682
  • [2] Effect of Rotational Speed on Microstructure and Mechanical Properties of Refill Friction Stir Spot Welded 2024 Al Alloy
    Zhengwei Li
    Shuangsheng Gao
    Shude Ji
    Yumei Yue
    Peng Chai
    Journal of Materials Engineering and Performance, 2016, 25 : 1673 - 1682
  • [3] Friction stir processing of wire arc additively manufactured Al-Zn-Mg-Cu alloy reinforced with high-entropy alloy particles: Microstructure and mechanical properties
    Shan, He
    Li, Yang
    Wang, Shuwen
    Yuan, Tao
    Chen, Shujun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1020
  • [4] Microstructure and Mechanical Property of SiC Reinforced 7075 Alloy Surface Composite Fabricated by Friction Stir Processing
    Chang, Xia
    Liu, Cheng-Long
    Ma, Yan-Ping
    Chen, Chen-Hui
    Chai, Lin-Jiang
    JOINT CONFERENCES OF 2017 INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE AND ENGINEERING APPLICATION (ICMSEA 2017) AND 2017 INTERNATIONAL CONFERENCE ON MECHANICS, CIVIL ENGINEERING AND BUILDING MATERIALS (MCEBM 2017), 2017, 124
  • [5] Microstructural and Mechanical Properties of Aluminum Matrix Composite Reinforced with Cu-Zn-Al Particles Fabricated by Friction Stir Processing
    Li Yang
    Kai Jian Lu
    Zheng Liu
    Yao Cheng Zhang
    Yu Hang Xu
    Feng Xu
    Hui Ming Gao
    Transactions of the Indian Institute of Metals, 2022, 75 : 1471 - 1479
  • [6] Microstructural and Mechanical Properties of Aluminum Matrix Composite Reinforced with Cu-Zn-Al Particles Fabricated by Friction Stir Processing
    Yang, Li
    Lu, Kai Jian
    Liu, Zheng
    Zhang, Yao Cheng
    Xu, Yu Hang
    Xu, Feng
    Gao, Hui Ming
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2022, 75 (06) : 1471 - 1479
  • [7] Optimization of friction stir processing parameters to improve mechanical properties and microstructure of Al5083 aluminum alloy reinforced with AlCoCrFeNiSi high-entropy alloy
    Kumaravel, S.
    Suresh, P.
    PHYSICA SCRIPTA, 2024, 99 (10)
  • [8] Microstructure and properties of TiCuZnSn alloy layer on titanium fabricated by friction stir processing
    Li, Jie
    Wei, Guijiang
    Liu, Jiaqi
    Zhou, Peng
    Shi, Hongyuan
    Wang, Pu
    MATERIALS LETTERS, 2025, 378
  • [9] The properties and microstructure of Al-based composites reinforced with ceramic particles
    Smagorinski, ME
    Tsantrizos, PG
    Grenier, S
    Brzezinski, T
    Kim, G
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1998, 244 (01): : 86 - 90
  • [10] Microstructure and Mechanical Properties of GNPs/Al Composites Fabricated by Friction Stir Processing
    Miao, Yu
    Xia, Chun
    Huang, Chunping
    Ke, Liming
    Fu, Qiang
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2020, 49 (12): : 4329 - 4335