Spectral decomposition of the Stokes flow operators in the inverted prolate spheroidal coordinates

被引:0
|
作者
机构
[1] Hadjinicolaou, M.
[2] Protopapas, E.
来源
Hadjinicolaou, M. (hadjinicolaou@eap.gr) | 1600年 / Oxford University Press卷 / 80期
关键词
The eigenfunctions of the axisymmetric Stokes flow operator E2 in the inverted prolate spheroidal system of coordinates are derived analytically; while an analytical method for the calculation of the eigenfunctions of E4 in the inverted prolate spheroidal system of coordinates is presented. The stream function psi satisfies the Stokes flow equation E4 =0 while the equation E2 =0 expresses an irrotational flow. In the prolate spheroidal coordinates; the solution space ker E2 is decomposed in separable eigenfunctions and the solution space ker E4 enjoys a spectral decomposition in semiseparable eigenfunctions. In the inverse prolate spheroidal system; we show that the partial differential operator E2 admits R-separable solutions with R being a function of the Euclidean distance; r; while the operator E4 admits R-semiseparable solutions with R being a function of the Euclidean distance on the third; r3. We derive the 0-eigenspace of E2 and we prove that the ker E4 consists of both: the eigenfunctions and the generalized eigenfunctions of ker E2. Furthermore; by employing the Kelvin transformation; we show that the obtained expressions satisfy the Kelvin theorems as these are applied to the Stokes flow. The obtained eigenfunctions may be used in the mathematical treatment of medical problems; such as the blood plasma flow around erythrocytes. © 2015 The Authors;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
相关论文
共 50 条
  • [1] Spectral decomposition of the Stokes flow operators in the inverted prolate spheroidal coordinates
    Hadjinicolaou, M.
    Protopapas, E.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2015, 80 (05) : 1475 - 1491
  • [2] Modal decomposition in prolate spheroidal coordinates to minimize the quality factor of an antenna
    Adams, Richard C.
    Hansen, Peder M.
    2007 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-12, 2007, : 5480 - +
  • [3] COMMENTS ON SEPARABILITY OPERATORS INVARIANCE LADDER OPERATORS AND QUANTIZATION OF KEPLER PROBLEM IN PROLATE-SPHEROIDAL COORDINATES
    KIEFER, HM
    FRADKIN, DM
    JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (04) : 627 - &
  • [4] Prolate spheroidal spectral estimates
    Lii, K. S.
    Rosenblatt, M.
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (11) : 1339 - 1348
  • [5] Ultrawideband Antenna distortion analysis based on Prolate Spheroidal Spectral Decomposition
    Luis Carro, Pedro
    de Mingo, Jesus
    2008 IEEE INTERNATIONAL CONFERENCE ON ULTRA-WIDEBAND, VOL 1, PROCEEDINGS, 2008, 1 : 17 - 20
  • [6] Generalized Sturmian Functions in prolate spheroidal coordinates
    Mitnik, D. M.
    Lopez, F. A.
    Ancarani, L. U.
    MOLECULAR PHYSICS, 2021, 119 (08)
  • [7] On the R-semiseparation of the Stokes bi-stream operator in inverted prolate spheroidal geometry
    Hadjinicolaou, M.
    Protopapas, E.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (02) : 207 - 211
  • [8] Stokes phenomenon for the prolate spheroidal wave equation
    Fauvet, F.
    Ramis, J. -R
    Richard-Jung, F.
    Thomann, J.
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (12) : 1309 - 1319
  • [9] TABLES OF EIGENVALUES OF WAVE EQUATION IN PROLATE SPHEROIDAL COORDINATES
    HANISH, S
    KING, B
    REPORT OF NRL PROGRESS, 1969, (JAN): : 10 - &
  • [10] PML-FDTD Method in Prolate Spheroidal Coordinates
    Zhang, Maoyu
    Wang, Jianguo
    PIERS 2010 XI'AN: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2010, : 185 - 188