Integral transforms for explicit source estimation in non-linear advection-diffusion problems

被引:0
|
作者
de Oliveira, Andre J. P. [1 ,2 ]
Knupp, Diego C. [2 ]
Abreu, Luiz A. S. [2 ]
机构
[1] Inst Fed Norte Minas Gerais, IFNMG Campus Salinas,Rodovia MG 404,Km 02 s-n Zona, BR-39560000 Salinas, MG, Brazil
[2] Univ Estado Rio De Janeiro, IPRJ, UERJ, Rua Bonfim 25,Vila Amelia, BR-28625570 Nova Friburgo, RJ, Brazil
关键词
Burgers' equation; Integral transforms; Inverse problems; Non-linear problems; Explicit formulation; NUMERICAL-SOLUTION; BURGERS-EQUATION; MONTE-CARLO; HEAT;
D O I
10.1016/j.amc.2024.129092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In many engineering problems non-linear mathematical models are needed to accurately describe the physical phenomena involved. In such cases, the inverse problems related to those models bring additional challenges. In this scenario, this work provides a novel general regularized methodology based on integral transforms for obtaining explicit solutions to inverse problems related to source term estimation in non-linear advection-diffusion models. Numerical examples demonstrate the application of the methodology for some cases of the one- and two-dimensional versions of the non-linear Burgers' equation. An uncertainty analysis for the proposed inverse problem is also conducted using the Monte Carlo Method, in order to illustrate the reliability of the estimates. The results reveal accurate estimates for different functional forms of the sought source term and varying noise levels, for both diffusion-dominated and advection-dominated scenarios.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Numerical Resolution of the Advection-Diffusion Equation with Non-Linear Adsorption Isotherm
    Stinguel, L.
    Guirardello, R.
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [2] Non-linear advection-diffusion equations approximate swarming but not schooling populations
    Grunbaum, Daniel
    Chan, Karen
    Tobin, Elizabeth
    Nishizaki, Michael T.
    MATHEMATICAL BIOSCIENCES, 2008, 214 (1-2) : 38 - 48
  • [3] Solution of the linear and nonlinear advection-diffusion problems on a sphere
    Skiba, Yuri N.
    Cruz-Rodriguez, Roberto C.
    Filatov, Denis M.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (06) : 1922 - 1937
  • [4] ON SOURCE-TERM PARAMETER ESTIMATION FOR LINEAR ADVECTION-DIFFUSION EQUATIONS WITH UNCERTAIN COEFFICIENTS
    Zhuk, Sergiy
    Tchrakian, Tigran T.
    Moore, Stephen
    Ordonez-Hurtado, Rodrigo
    Shorten, Robert
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (04): : A2334 - A2356
  • [5] Runge-Kutta-Gegenbauer explicit methods for advection-diffusion problems
    O'Sullivan, Stephen
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 388 : 209 - 223
  • [6] A fast difference scheme for the multi-term time fractional advection-diffusion equation with a non-linear source term
    Dwivedi, Himanshu Kumar
    Rajeev
    CHINESE JOURNAL OF PHYSICS, 2024, 89 : 86 - 103
  • [7] On the Numerical Solution of Advection-Diffusion Problems with Singular Source Terms
    Soykan, Ezgi
    Ahlatcioglu, Mehmet
    Ashyraliyev, Maksat
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2018), 2018, 1997
  • [8] CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS
    BREZZI, F
    RUSSO, A
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1994, 4 (04): : 571 - 587
  • [9] A Meshless Method for Advection-Diffusion Problems
    Xue, Dangqin
    Zhao, Huanping
    Zhang, Jiaxi
    Hou, Shulin
    ENERGY DEVELOPMENT, PTS 1-4, 2014, 860-863 : 1594 - +
  • [10] Enhanced coercivity for pure advection and advection-diffusion problems
    Canuto, Claudio
    JOURNAL OF SCIENTIFIC COMPUTING, 2006, 28 (2-3) : 223 - 244