A kinetic energy preserving nodal discontinuous Galerkin spectral element method

被引:0
|
作者
机构
[1] Gassner, Gregor J.
来源
Gassner, G.J. (ggassner@math.uni-koeln.de) | 1600年 / John Wiley and Sons Ltd卷 / 76期
关键词
Finite difference method - Kinetics - Galerkin methods - Surface measurement;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] A kinetic energy preserving nodal discontinuous Galerkin spectral element method
    Gassner, Gregor J.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 76 (01) : 28 - 50
  • [2] An Assessment of the Efficiency of Nodal Discontinuous Galerkin Spectral Element Methods
    Kopriva, David A.
    Jimenez, Edwin
    RECENT DEVELOPMENTS IN THE NUMERICS OF NONLINEAR HYPERBOLIC CONSERVATION LAWS, 2013, 120 : 223 - +
  • [3] Stability of Overintegration Methods for Nodal Discontinuous Galerkin Spectral Element Methods
    Kopriva, David A.
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (01) : 426 - 442
  • [4] Stability of Overintegration Methods for Nodal Discontinuous Galerkin Spectral Element Methods
    David A. Kopriva
    Journal of Scientific Computing, 2018, 76 : 426 - 442
  • [5] Discontinuous Galerkin spectral element lattice Boltzmann method on triangular element
    Shi, X
    Lin, JZ
    Yu, ZS
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2003, 42 (11) : 1249 - 1261
  • [6] A nodal discontinuous Galerkin finite element method for the poroelastic wave equation
    Shukla, Khemraj
    Hesthaven, Jan S.
    Carcione, Jose M.
    Ye, Ruichao
    de la Puente, Josep
    Jaiswal, Priyank
    COMPUTATIONAL GEOSCIENCES, 2019, 23 (03) : 595 - 615
  • [7] A nodal discontinuous Galerkin finite element method for the poroelastic wave equation
    Khemraj Shukla
    Jan S. Hesthaven
    José M. Carcione
    Ruichao Ye
    Josep de la Puente
    Priyank Jaiswal
    Computational Geosciences, 2019, 23 : 595 - 615
  • [8] Energy conserving discontinuous Galerkin spectral element method for the Vlasov-Poisson system
    Madaule, Eric
    Restelli, Marco
    Sonnendruecker, Eric
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 279 : 261 - 288
  • [9] A nodal discontinuous Galerkin finite element method for nonlinear elastic wave propagation
    Matar, Olivier Bou
    Guerder, Pierre-Yves
    Li, YiFeng
    Vandewoestyne, Bart
    Van den Abeele, Koen
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2012, 131 (05): : 3650 - 3663
  • [10] STRUCTURE-PRESERVING NONLINEAR FILTERING FOR CONTINUOUS AND DISCONTINUOUS GALERKIN SPECTRAL/HP ELEMENT METHODS
    Zala, Vidhi
    Kirby, Robert M.
    Narayan, Akil
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (06): : A3713 - A3732