基于FMF-YOLOv5的光伏组件红外图像故障诊断

被引:0
|
作者
张莉莉
王修晖
机构
[1] 中国计量大学信息工程学院浙江省电磁波信息技术与计量检测重点实验室
基金
浙江省自然科学基金;
关键词
目标检测; 光伏故障; 特征融合; 融合注意力;
D O I
暂无
中图分类号
TP391.41 []; TM615 [太阳能发电];
学科分类号
080203 ; 0807 ;
摘要
针对红外图像对比度较低、故障特征不明显的问题,提出全新的融合注意力机制(fusion attention mechanism,FAM),增强有效故障特征信息。创建新的融合金字塔池化(fusion spatial pyramid pooling,FSPP),增强特征提取能力。引入一种改进多层次融合卷积(multi-level fusion convolution,MFConv),利用MFConv构建的多层次跨阶段局部网络(multi-level cross stage partial network,MCSP)模块代替CSP模块,在提高少量模型参数量情况下,增加模型检测准确性。实验结果表明,在IoU阈值为0.5的情况下,该方法的平均精度(mAP)达到了93.1%。为光伏系统提供了可靠、高效的故障检测解决方案,从而使其成为提高系统性能和降低维护费用的实用解决方案。
引用
收藏
页码:327 / 334
页数:8
相关论文
共 24 条
  • [1] YOLO-Tea: A Tea Disease Detection Model Improved by YOLOv5
    Xue, Zhenyang
    Xu, Renjie
    Bai, Di
    Lin, Haifeng
    [J]. FORESTS, 2023, 14 (02):
  • [2] GBH-YOLOv5: Ghost Convolution with BottleneckCSP and Tiny Target Prediction Head Incorporating YOLOv5 for PV Panel Defect Detection
    Li, Longlong
    Wang, Zhifeng
    Zhang, Tingting
    [J]. ELECTRONICS, 2023, 12 (03)
  • [3] A visual defect detection for optics lens based on the YOLOv5-C3CA-SPPF network model
    Tang, Haiyang
    Liang, Shan
    Yao, Dan
    Qiao, Yongjie
    [J]. OPTICS EXPRESS, 2023, 31 (02) : 2628 - 2643
  • [4] A Dynamic Detection Method for Phenotyping Pods in a Soybean Population Based on an Improved YOLO-v5 Network
    Fu, Xiaoming
    Li, Aokang
    Meng, Zhijun
    Yin, Xiaohui
    Zhang, Chi
    Zhang, Wei
    Qi, Liqiang
    [J]. AGRONOMY-BASEL, 2022, 12 (12):
  • [5] High-Quality Image Compressed Sensing and Reconstruction with Multi-scale Dilated Convolutional Neural Network
    Wang, Zhifeng
    Wang, Zhenghui
    Zeng, Chunyan
    Yu, Yan
    Wan, Xiangkui
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2022, 42 (3) : 1593 - 1616
  • [6] Lightweight tea bud recognition network integrating GhostNet and YOLOv5
    Cao, Miaolong
    Fu, Hao
    Zhu, Jiayi
    Cai, Chenggang
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (12) : 12897 - 12914
  • [7] A Small Target Forest Fire Detection Model Based on YOLOv5 Improvement
    Xue, Zhenyang
    Lin, Haifeng
    Wang, Fang
    [J]. FORESTS, 2022, 13 (08):
  • [8] Deep Knowledge Tracing Based on Spatial and Temporal Representation Learning for Learning Performance Prediction
    Lyu, Liting
    Wang, Zhifeng
    Yun, Haihong
    Yang, Zexue
    Li, Ya
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (14):
  • [9] Failures of photo.[J].Waqar Akram M.;Li Guiqiang;Jin Yi;Chen Xiao.Applied Energy.2022,
  • [10] Lite-YOLOv5: A Lightweight Deep Learning Detector for On-Board Ship Detection in Large-Scene Sentinel-1 SAR Images
    Xu, Xiaowo
    Zhang, Xiaoling
    Zhang, Tianwen
    [J]. REMOTE SENSING, 2022, 14 (04)