Microstructure Characteristics and Elevated-Temperature Wear Mechanism of FeCoCrNiAl High-Entropy Alloy Prepared by Laser Cladding

被引:1
|
作者
Gao, Yali [1 ]
Bai, Sicheng [1 ]
Kou, Guangpeng [1 ]
Jiang, Shan [1 ]
Liu, Yu [1 ]
Zhang, Dongdong [1 ]
机构
[1] Northeast Elect Power Univ, Dept Mech Engn, Jilin 132012, Peoples R China
关键词
laser cladding; H13; steel; high-entropy alloy; microstructure; elevated-temperature friction and wear; BEHAVIOR; STEEL;
D O I
10.3390/pr12102228
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This paper investigated the FeCoCrNiAl high-entropy alloy on H13 steel, prepared using laser cladding, to improve the elevated-temperature wear resistance of the alloy. The results revealed that FCC and BCC phases, in terms of the coating, produced a large dislocation density. The coating exhibited a columnar and equiaxed crystal microstructure. With the comprehensive effects of fine-grain strengthening, solid solution strengthening, and dislocation strengthening, the average hardness of the coating (500 HV0.1) was improved by 150% compared with that of H13 steel (200 HV0.1). The wear experiments were conducted at 623 K, 723 K, and 823 K. Compared with H13 steel, the wear volume of the coating decreased by 59.20%, 70.79%, and 78.20% under different temperatures. The wear forms impacting the coating were mainly abrasive wear and oxidation wear. However, H13 steel presented adhesive wear and fatigue wear, in addition to abrasive wear and oxidation wear.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Effect of high temperature heat treatment on microstructure and properties of FeCoCrNiAl high-entropy alloy laser cladding layer
    Cai, Yangchuan
    Shan, Mengdie
    Manladan, Sunusi Marwana
    Zhu, Lisong
    Gao, Feifeng
    Sun, Da
    Han, Jian
    MATERIALS CHARACTERIZATION, 2022, 191
  • [2] Microstructure characterization and high-temperature wear mechanism of high-entropy alloy matrix composite coating fabricated by laser cladding
    Wu, Tao
    Yang, Chen
    Yu, Litao
    Zheng, Xiaofeng
    Zhang, Lingfeng
    Jiang, Yitong
    Xue, Yanpeng
    Lu, Yonghao
    Luan, Benli
    APPLIED SURFACE SCIENCE, 2024, 677
  • [3] Microstructure and Wear Resistance of CoCrNiMnTix High-entropy Alloy Coating by Laser Cladding
    Gao, Yu-Long
    Ma, Guo-Liang
    Gao, Xiao-Hua
    Cui, Hong-Zhi
    Surface Technology, 2022, 51 (09): : 351 - 358
  • [4] Microstructure and Properties of AlCoCrFeNiTi High-Entropy Alloy Coatings Prepared by Laser Cladding
    Mengxian Li
    Zhiping Sun
    Zhaomin Xu
    Zhiming Wang
    Journal of Harbin Institute of Technology(New Series), 2024, 31 (02) : 50 - 61
  • [6] Microstructure and Properties of FeCrNiCoMnx, High-Entropy Alloy Coating Prepared by Laser Cladding
    Zhang Chong
    Wu Bingqian
    Wang Qianting
    Chen Dingning
    Dai Pinqiang
    RARE METAL MATERIALS AND ENGINEERING, 2017, 46 (09) : 2639 - 2644
  • [7] Effects of Tungsten Addition on the Microstructure and Properties of FeCoCrNiAl High-Entropy Alloy Coatings Fabricated via Laser Cladding
    Ma, Shibang
    Zhang, Congzheng
    Li, Liang
    Chen, Haodong
    Yang, Yinhai
    MATERIALS, 2024, 17 (14)
  • [8] Microstructure and wear resistance of AlCrFeNiMo0.5Six high-entropy alloy coatings prepared by laser cladding
    Xiao-cong Li
    Hui Liang
    Yan-zhou Zhao
    Li Gao
    Li Jiang
    Zhi-qiang Cao
    China Foundry, 2022, 19 : 473 - 480
  • [9] Microstructure and high-temperature wear behavior of CoCrFeNiWx high-entropy alloy coatings fabricated by laser cladding
    Liu, Hao
    Gao, Qiang
    Dai, Jianbo
    Chen, Peijian
    Gao, Wenpeng
    Hao, Jingbin
    Yang, Haifeng
    TRIBOLOGY INTERNATIONAL, 2022, 172
  • [10] Microstructure and wear resistance of AlCrFeNiMo0.5Six high-entropy alloy coatings prepared by laser cladding
    Xiao-cong Li
    Hui Liang
    Yan-zhou Zhao
    Li Gao
    Li Jiang
    Zhi-qiang Cao
    China Foundry, 2022, 19 (06) : 473 - 480