Wireless Federated Learning over Resource-Constrained Networks: Digital versus Analog Transmissions

被引:0
|
作者
Yao J. [1 ]
Xu W. [1 ]
Yang Z. [2 ]
You X. [1 ]
Bennis M. [3 ]
Poor H.V. [4 ]
机构
[1] National Mobile Communications Research Laboratory (NCRL), Southeast University, Nanjing
[2] Zhejiang Lab, Hangzhou
[3] Center for Wireless Communications, Oulu University, Oulu
[4] Department of Electrical and Computer Engineering, Princeton University, NJ
基金
欧盟地平线“2020”; 美国国家科学基金会;
关键词
Computational modeling; Convergence; convergence analysis; digital communication; Federated learning (FL); Optimization; over-the-air computation (AirComp); Task analysis; Training; Uplink; Wireless networks;
D O I
10.1109/TWC.2024.3407822
中图分类号
学科分类号
摘要
To enable wireless federated learning (FL) in communication resource-constrained networks, two communication schemes, i.e., digital and analog ones, are effective solutions. In this paper, we quantitatively compare these two techniques, highlighting their essential differences as well as respectively suitable scenarios. We first examine both digital and analog transmission schemes, together with a unified and fair comparison framework under imbalanced device sampling, strict latency targets, and transmit power constraints. A universal convergence analysis under various imperfections is established for evaluating the performance of FL over wireless networks. These analytical results reveal that the fundamental difference between the digital and analog communications lies in whether communication and computation are jointly designed or not. The digital scheme decouples the communication design from FL computing tasks, making it difficult to support uplink transmission from massive devices with limited bandwidth and hence the performance is mainly communication-limited. In contrast, the analog communication allows over-the-air computation (AirComp) and achieves better spectrum utilization. However, the computation-oriented analog transmission reduces power efficiency, and its performance is sensitive to computation errors from imperfect channel state information (CSI). Furthermore, device sampling for both schemes are optimized and differences in sampling optimization are analyzed. Numerical results verify the theoretical analysis and affirm the superior performance of the sampling optimization. IEEE
引用
下载
收藏
页码:1 / 1
相关论文
共 50 条
  • [1] Federated Learning in Unreliable and Resource-Constrained Cellular Wireless Networks
    Salehi, Mohammad
    Hossain, Ekram
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (08) : 5136 - 5151
  • [2] Agent Selection Framework for Federated Learning in Resource-Constrained Wireless Networks
    Raftopoulou, Maria
    Da Silva, Jose Mairton B.
    Litjens, Remco
    Vincent Poor, H.
    Van Mieghem, Piet
    IEEE Transactions on Machine Learning in Communications and Networking, 2024, 2 : 1265 - 1282
  • [3] ESFL: Efficient Split Federated Learning Over Resource-Constrained Heterogeneous Wireless Devices
    Zhu, Guangyu
    Deng, Yiqin
    Chen, Xianhao
    Zhang, Haixia
    Fang, Yuguang
    Wong, Tan F.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (16): : 27153 - 27166
  • [4] Adaptive Decentralized Federated Learning in Resource-Constrained IoT Networks
    Du, Mengxuan
    Zheng, Haifeng
    Gao, Min
    Feng, Xinxin
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (06) : 10739 - 10753
  • [5] Performance Analysis for Resource Constrained Decentralized Federated Learning Over Wireless Networks
    Yan, Zhigang
    Li, Dong
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (07) : 4084 - 4100
  • [6] Efficient Parallel Split Learning Over Resource-Constrained Wireless Edge Networks
    Lin, Zheng
    Zhu, Guangyu
    Deng, Yiqin
    Chen, Xianhao
    Gao, Yue
    Huang, Kaibin
    Fang, Yuguang
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (10) : 9224 - 9239
  • [7] GoMORE: Global Model Reuse for Resource-Constrained Wireless Federated Learning
    Yao, Jiacheng
    Yang, Zhaohui
    Xu, Wei
    Chen, Mingzhe
    Niyato, Dusit
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (09) : 1543 - 1547
  • [8] Optimal Device Selection in Federated Learning for Resource-Constrained Edge Networks
    Kushwaha, Deepali
    Redhu, Surender
    Brinton, Christopher G.
    Hegde, Rajesh M.
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (12): : 10845 - 10856
  • [9] Demonstration of Federated Learning in a Resource-Constrained Networked Environment
    Conway-Jones, Dave
    Tuor, Tiffany
    Wang, Shiqiang
    Leung, Kin K.
    2019 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING (SMARTCOMP 2019), 2019, : 484 - 486
  • [10] A Survey on Federated Learning for Resource-Constrained IoT Devices
    Imteaj, Ahmed
    Thakker, Urmish
    Wang, Shiqiang
    Li, Jian
    Amini, M. Hadi
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (01) : 1 - 24