Na3V2(PO4)3/C in Symmetric Cells: Evaluating Anode and Cathode Performance

被引:0
|
作者
Sharma, Akshita [1 ]
Anand, Tejveer Singh [2 ]
Urkude, Rajashri [3 ]
Gupta, Amit [4 ]
Ganguli, Ashok Kumar [1 ,5 ]
机构
[1] IIT Delhi, Dept Chem, New Delhi 110016, India
[2] IIT Delhi, Dept Elect Engn, New Delhi 110016, India
[3] Bhabha Atom Res Ctr, Trombay 400085, Mumbai, India
[4] IIT Delhi, Dept Mech Engn, New Delhi 110016, India
[5] IISER, Dept Chem Sci, Berhampur 760010, Odisha, India
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2024年 / 128卷 / 46期
关键词
SODIUM; CARBON; CHALLENGES; STABILITY;
D O I
10.1021/acs.jpcc.4c05183
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Renewable energy sources necessitate efficient energy storage, highlighting the critical challenge and importance of electrochemical storage devices, such as sodium-ion batteries. Na3V2(PO4)3 (NVP), as a typical NASICON structure, is a promising electrode material exhibiting fast Na+ ion conductivity due to its 3D framework. In this report, we present the synthesis of NVP/C (Na3V2(PO4)3/Carbon composite) via the sol-gel method and investigate its electrochemical behavior in both the anodic and cathodic ranges, as well as its assessment in a symmetric cell followed by a detailed postcycling analysis. Increased overpotential has impacted the capacity retention of NVP-C (NVP as a cathode), delivering only 74.61% with an initial specific capacity of 120.20 mAh/g, whereas NVP-A (NVP as an anode) showed better cyclic stability, exhibiting 142.11 mAh/g at the 12th cycle with a capacity retention of 93.03%. NVP-C showed specific capacities of 99.17, 84.74, and 53.20 mAh/g at 25, 0, and -5 degrees C, respectively, while NVP-A exhibited 191.42, 153.33, and 91.37 mAh/g under the same conditions, at 0.2C over 60 cycles. NVP was studied in a symmetric full cell, exhibiting an average energy density of 92.94 Wh/kg over 50 cycles. Postcycling investigations, including ToF-SIMS, XPS, and XANES, revealed that products of parasitic reactions, such as Na2CO3, NaF2, and Na x PF y O z along with structural distortion on the anode side, significantly impact the lifecycle of NVP. Our findings provide new insights into the performance, which will results in the improvement of NVP symmetric full-cell configurations.
引用
收藏
页码:19499 / 19509
页数:11
相关论文
共 50 条
  • [1] High performance cathode material based on Na3V2(PO4)2F3 and Na3V2(PO4)3 for sodium-ion batteries
    Yang, Ze
    Li, Guolong
    Sun, Jingying
    Xie, Lixin
    Jiang, Yan
    Huang, Yunhui
    Chen, Shuo
    ENERGY STORAGE MATERIALS, 2020, 25 (25) : 724 - 730
  • [2] Na3V2(PO4)3/C nanofiber bifunction as anode and cathode materials for sodium-ion batteries
    Qing Zhu
    Bo Nan
    Yang Shi
    Yinggang Zhu
    Sisi Wu
    Liqing He
    Yonghong Deng
    Liping Wang
    Quanqi Chen
    Zhouguang Lu
    Journal of Solid State Electrochemistry, 2017, 21 : 2985 - 2995
  • [3] Na3V2(PO4)3/C nanofiber bifunction as anode and cathode materials for sodium-ion batteries
    Zhu, Qing
    Nan, Bo
    Shi, Yang
    Zhu, Yinggang
    Wu, Sisi
    He, Liqing
    Deng, Yonghong
    Wang, Liping
    Chen, Quanqi
    Lu, Zhouguang
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2017, 21 (10) : 2985 - 2995
  • [4] Preventing structural degradation from Na3V2(PO4)3 to V2(PO4)3: F-doped Na3V2(PO4)3/C cathode composite with stable lifetime for sodium ion batteries
    Chen, Yanjun
    Xu, Youlong
    Sun, Xiaofei
    Zhang, Baofeng
    He, Shengnan
    Li, Long
    Wang, Chao
    JOURNAL OF POWER SOURCES, 2018, 378 : 423 - 432
  • [5] Facilitating Na-ion transport and enhancing energy density of Na3V2(PO4)3 through Na3V3(PO4)4/Na3V2(PO4)3 heterostructure design
    Li, Zhaojin
    Di, Yunbo
    Wang, Yifei
    Zhang, Di
    Sun, Huilan
    Sun, Qujiang
    Wang, Qiujun
    Yuan, Fei
    Li, Ranran
    Wang, Bo
    CHEMICAL ENGINEERING JOURNAL, 2025, 510
  • [6] A stable and superior performance of Na3V2(PO4)3/C nanocomposites as cathode for sodium-ion batteries
    Hu, Fangdong
    Jiang, Xiaolei
    INORGANIC CHEMISTRY COMMUNICATIONS, 2020, 115
  • [7] Synthesis and Electrochemical Performance of the Na3V2(PO4)3 Cathode for Sodium-Ion Batteries
    Nguyen Van Nghia
    Jafian, Samuel
    Hung, I-Ming
    JOURNAL OF ELECTRONIC MATERIALS, 2016, 45 (05) : 2582 - 2590
  • [8] Synthesis and Electrochemical Performance of the Na3V2(PO4)3 Cathode for Sodium-Ion Batteries
    Nguyen Van Nghia
    Samuel Jafian
    I-Ming Hung
    Journal of Electronic Materials, 2016, 45 : 2582 - 2590
  • [9] Construction of Na3V2(PO4)3/C nanoplate as cathode for stable sodium ion storage
    Li, Lin
    Zheng, Hao
    Wang, Shiquan
    Chen, Xiao
    Yang, Shuijin
    Feng, Chuanqi
    IONICS, 2022, 28 (02) : 981 - 988
  • [10] Na3V2(PO4)3/C nanorods as advanced cathode material for sodium ion batteries
    Li, Hui
    Bai, Ying
    Wu, Feng
    Ni, Qiao
    Wu, Chuan
    SOLID STATE IONICS, 2015, 278 : 281 - 286