Mechanistic modeling for coupled chloride-sulfate attack in cement-based materials

被引:0
|
作者
Chen, Dingshi [1 ]
Guo, Wenhua [1 ]
Chen, Dinghui [2 ]
Guo, Liujun [1 ]
Cai, Baofeng [1 ]
Ye, Tongjie [1 ]
机构
[1] Cent South Univ, Sch Civil Engn, Changsha 410075, Peoples R China
[2] Northwestern Polytech Univ, Xian Inst Flexible Elect lFE, Frontiers Sci Ctr Flexible Elect, Xian 710072, Peoples R China
关键词
Chloride attack; Sulfate attack; Calcium leaching; Coupling model; Multi-ion transport; TRANSPORT; CONCRETE; PASTES; MICROSTRUCTURE; DIFFUSIVITY; EQUILIBRIUM; DAMAGE; IONS;
D O I
10.1016/j.conbuildmat.2024.139231
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Concrete infrastructures in marine and saline environments are vulnerable to simultaneous chloride and sulfate attacks, compounded by calcium leaching. To address this complex degradation process, we developed a multiion transport-chemo-thermo-damage (TCTD) model. This model captures the intricate interactions among multiion diffusion, chemical reactions, pore evolution, thermodynamic effects, mechanical damage, and calcium leaching. Validation against multiple independent third-party experimental data confirms the model's reliability and accuracy. Based on this validated model, we analyzed the instantaneous spatiotemporal variations in phase concentrations and porosity, quantifying the primary factors affecting ion transport and concrete degradation. This analysis provides a clear understanding of the individual and combined impacts of these factors. The results indicate that coupled chloride-sulfate attack mitigates individual sulfate and chloride attacks in the short term, while calcium leaching promotes significant gypsum and ettringite formation near the concrete surface. Higher water-to-cement ratios, increased aluminate content, and elevated temperatures are found to exacerbate degradation by accelerating diffusion and reaction rates. Calcium leaching and pore evolution have a much greater effect on coupled chloride sulfate attack than chemical activity coefficients. This research enhances the understanding of coupled ion attacks and aids in optimizing the durability design and predicting the longevity of concrete structures in aggressive environments.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Understanding the degradation mechanisms of cement-based systems in combined chloride-sulfate attack
    Metalssi, Othman Omikrine
    Touhami, Rim Ragoug
    Barberon, Fabien
    de Lacaillerie, Jean -Baptiste d'Espinose
    Roussel, Nicolas
    Divet, Loic
    Torrenti, Jean-Michel
    CEMENT AND CONCRETE RESEARCH, 2023, 164
  • [2] A mechanistic model of the degradation of cement-based materials subjected to sulfate attack
    Wang, Dafu
    Zhang, Yunsheng
    Liu, Cheng
    Liu, Zhiyong
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 421
  • [3] Sulfate crystallization attack on cement-based materials
    Xie, Youjun
    Ma, Kunlin
    Long, Guangcheng
    ADVANCES IN CONCRETE AND STRUCTURES, 2009, 400-402 : 89 - 99
  • [4] Sulfate crystallization attack on cement-based materials
    Xie, Youjun
    Ma, Kunlin
    Long, Guangcheng
    Key Engineering Materials, 2009, 400-402 : 89 - 99
  • [5] Numerical modeling of chloride diffusion in cement-based materials considering calcium leaching and external sulfate attack
    Shao, Wei
    Li, Qingming
    Zhang, Wenbing
    Shi, Danda
    Li, Hanhan
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 401
  • [6] Modeling of damage in cement-based materials subjected to external sulfate attack. I: Formulation
    Tixier, R
    Mobasher, B
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2003, 15 (04) : 305 - 313
  • [8] Effect of Stray Current on Cement-Based Materials under Sulfate Attack
    Li, Gaonian
    Wang, Baomin
    Panesar, Daman K.
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2022, 34 (02)
  • [9] Research Progress on Thaumasite Form of Sulfate Attack in Cement-Based Materials
    Wu, Meng
    Zhang, Yunsheng
    Liu, Zhiyong
    She, Wei
    Sui, Shiyu
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2022, 50 (08): : 2270 - 2283
  • [10] EFFECTS OF COAL GANGUE ON THE SULFATE ATTACK RESISTANCE OF CEMENT-BASED MATERIALS
    Ding, Guanglin
    Yang, Jun
    Yang, Zhijun
    CERAMICS-SILIKATY, 2021, 65 (02) : 148 - 157