Background: Crohn's disease is a complex genetic disease that involves chronic gastrointestinal inflammation and results from a complex set of genetic, environmental, and immunological factors. By analyzing data from the human microbiome, genetic information can be used to predict Crohn's disease. Recent advances in deep learning have demonstrated its effectiveness in feature extraction and the use of deep learning to decode genetic information for disease prediction. Methods: In this paper, we present a deep learning-based model that utilizes a sequential convolutional attention network (SCAN) for feature extraction, incorporates adaptive additive interval losses to enhance these features, and employs support vector machines (SVM) for classification. To address the challenge of unbalanced Crohn's disease samples, we propose a random noise one-hot encoding data augmentation method. Results: Data augmentation with random noise accelerates training convergence, while SCAN-SVM effectively extracts features with adaptive additive interval loss enhancing differentiation. Our approach outperforms benchmark methods, achieving an average accuracy of 0.80 and a kappa value of 0.76, and we validate the effectiveness of feature enhancement. Conclusions: In summary, we use deep feature recognition to effectively analyze the potential information in genes, which has a good application potential for gene analysis and prediction of Crohn's disease.