Integral Solutions of the Ternary Diophantine Equation 945(x^2 + y^2) — 1889xy + 10(x + y) +100 = pz^q

被引:0
|
作者
Manikandan, K. [1 ]
Venkatraman, R. [1 ]
机构
[1] Department of Mathematics, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Vadapalani Campus, No.1 Jawaharlal Nehru Salai, Vadapalani, Tamilnadu, Chennai,600026, India
关键词
D O I
暂无
中图分类号
学科分类号
摘要
33
引用
收藏
相关论文
共 50 条
  • [1] ON THE DIOPHANTINE EQUATION X(10)+/-Y(10)=Z(2)
    SMITH, ST
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1992, 79 (01) : 87 - 108
  • [2] On primitive solutions of the Diophantine equation x y M 2+=2
    Busenhart, Chris
    Halbeisen, Lorenz
    Hungerbuehler, Norbert
    Riesen, Oliver
    OPEN MATHEMATICS, 2021, 19 (01): : 863 - 868
  • [3] On ternary biquadratic Diophantine equation 11(x2 - y2)
    Vidhyalakshmi, S.
    Gopalan, M. A.
    Thangam, S. A.
    Ozer, O.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2019, 25 (03) : 65 - 71
  • [4] On the diophantine equation (x(x-1)/2)(2)=y(y-1)/2
    Luo, M
    FIBONACCI QUARTERLY, 1996, 34 (03): : 277 - 279
  • [5] THE DIOPHANTINE EQUATION X(X+1)=Y(Y2+1)
    COHN, JHE
    MATHEMATICA SCANDINAVICA, 1991, 68 (02) : 171 - 179
  • [6] The diophantine equation (y plus q1)(y plus q2) ... (y +qm) = f(x)
    Subburam, S.
    ACTA MATHEMATICA HUNGARICA, 2015, 146 (01) : 40 - 46
  • [7] Diophantine equation x(2)+2(m)=y(n)
    Le, MH
    CHINESE SCIENCE BULLETIN, 1997, 42 (18): : 1515 - 1517
  • [8] Diophantine equation x~2 + 2~m =y~n
    LE MaohuaDepartment of Mathematics
    Chinese Science Bulletin, 1997, (18) : 1515 - 1517
  • [9] A note on the ternary Diophantine equation x2 - y2m = zn
    Berczes, Attila
    Le, Maohua
    Pink, Istvan
    Soydan, Gokhan
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2021, 29 (02): : 93 - 105
  • [10] THE DIOPHANTINE EQUATION X(2)+C=Y(N)
    COHN, JHE
    ACTA ARITHMETICA, 1993, 65 (04) : 367 - 381