Advancing document-level relation extraction with a syntax-enhanced multi-hop reasoning network

被引:0
|
作者
Zhong Y. [1 ]
Shen B. [1 ,2 ]
Wang T. [1 ]
机构
[1] School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing
[2] Key Laboratory of Communication and Information Systems, Beijing Municipal Commission of Education, Beijing
来源
基金
中国国家自然科学基金;
关键词
Attention mechanism; document-level relation extraction; multi-hop reasoning; syntactic information;
D O I
10.3233/JIFS-237167
中图分类号
学科分类号
摘要
Document-level relation extraction aims to uncover relations between entities by harnessing the intricate information spread throughout a document. Previous research involved constructing discrete syntactic matrices to capture syntactic relationships within documents. However, these methods are significantly influenced by dependency parsing errors, leaving much of the latent syntactic information untapped. Moreover, prior research has mainly focused on modeling two-hop reasoning between entity pairs, which has limited applicability in scenarios requiring multi-hop reasoning. To tackle these challenges, a syntax-enhanced multi-hop reasoning network (SEMHRN) is proposed. Specifically, the approach begins by using a dependency probability matrix that incorporates richer grammatical information instead of a sparse syntactic parsing matrix to build the syntactic graph. This effectively reduces syntactic parsing errors and enhances the model's robustness. To fully leverage dependency information, dependency-type-aware attention is introduced to refine edge weights based on connecting edge types. Additionally, a part-of-speech prediction task is included to regularize word embeddings. Unrelated entity pairs can disrupt the model's focus, reducing its efficiency. To concentrate the model's attention on related entity pairs, these related pairs are extracted, and a multi-hop reasoning graph attention network is employed to capture the multi-hop dependencies among them. Experimental results on three public document-level relation extraction datasets validate that SEMHRN achieves a competitive F1 score compared to the current state-of-the-art methods. © 2024 - IOS Press. All rights reserved.
引用
收藏
页码:9155 / 9171
页数:16
相关论文
共 50 条
  • [1] Document-Level Relation Extraction with Path Reasoning
    Xu, Wang
    Chen, Kehai
    Zhao, Tiejun
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2023, 22 (04)
  • [2] Discriminative Reasoning for Document-level Relation Extraction
    Xu, Wang
    Chen, Kehai
    Zhao, Tiejun
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 1653 - 1663
  • [3] Multi-Hop Transformer for Document-Level Machine Translation
    Zhang, Long
    Zhang, Tong
    Zhang, Haibo
    Yang, Baosong
    Ye, Wei
    Zhang, Shikun
    2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), 2021, : 3953 - 3963
  • [4] Evidence Reasoning and Curriculum Learning for Document-Level Relation Extraction
    Xu, Tianyu
    Qu, Jianfeng
    Hua, Wen
    Li, Zhixu
    Xu, Jiajie
    Liu, An
    Zhao, Lei
    Zhou, Xiaofang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (02) : 594 - 607
  • [5] Double Graph Based Reasoning for Document-level Relation Extraction
    Zeng, Shuang
    Xu, Runxin
    Chang, Baobao
    Li, Lei
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 1630 - 1640
  • [6] Document-Level Relation Extraction with Deep Gated Graph Reasoning
    Liang, Zeyu
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2024, 32 (07) : 1037 - 1050
  • [7] Reasoning with Latent Structure Refinement for Document-Level Relation Extraction
    Nan, Guoshun
    Guo, Zhijiang
    Sekulic, Ivan
    Lu, Wei
    58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), 2020, : 1546 - 1557
  • [8] Document-level Relation Extraction via Separate Relation Representation and Logical Reasoning
    Huang, Heyan
    Yuan, Changsen
    Liu, Qian
    Cao, Yixin
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (01)
  • [9] A Hierarchical Network for Multimodal Document-Level Relation Extraction
    Kong, Lingxing
    Wang, Jiuliang
    Ma, Zheng
    Zhou, Qifeng
    Zhang, Jianbing
    He, Liang
    Chen, Jiajun
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 16, 2024, : 18408 - 18416
  • [10] Pre-classification Supporting Reasoning for Document-level Relation Extraction
    Zhao, Jiehao
    Duan, Guiduo
    Huang, Tianxi
    PROCEEDINGS OF THE 10TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE GRAPHS (IJCKG 2021), 2021, : 156 - 160