Almost Sure Convergence and Non-Asymptotic Concentration Bounds for Stochastic Mirror Descent Algorithm

被引:0
|
作者
Paul, Anik Kumar [1 ]
Mahindrakar, Arun D. [1 ]
Kalaimani, Rachel K. [1 ]
机构
[1] Indian Institute of Technology Madras, Department of Electrical Engineering, Chennai,600036, India
来源
关键词
Consensus algorithm;
D O I
10.1109/LCSYS.2024.3482148
中图分类号
学科分类号
摘要
引用
收藏
页码:2397 / 2402
相关论文
共 50 条
  • [1] Almost sure convergence rates of stochastic proximal gradient descent algorithm
    Liang, Yuqing
    Xu, Dongpo
    OPTIMIZATION, 2024, 73 (08) : 2413 - 2446
  • [2] An Almost Sure Convergence Analysis of Zeroth-Order Mirror Descent Algorithm
    Paul, Anik Kumar
    Mahindrakar, Arun D.
    Kalaimani, Rachel K.
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 855 - 860
  • [3] Almost sure convergence of stochastic composite objective mirror descent for non-convex non-smooth optimization
    Liang, Yuqing
    Xu, Dongpo
    Zhang, Naimin
    Mandic, Danilo P.
    OPTIMIZATION LETTERS, 2023, 18 (9) : 2113 - 2131
  • [4] Robust Analysis of Almost Sure Convergence of Zeroth-Order Mirror Descent Algorithm
    Paul, Anik Kumar
    Mahindrakar, Arun D.
    Kalaimani, Rachel K.
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 1933 - 1938
  • [5] On the Almost Sure Convergence of Stochastic Gradient Descent in Non-Convex Problems
    Mertikopoulos, Panayotis
    Hallak, Nadav
    Kavis, Ali
    Cevher, Volkan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [6] Almost sure convergence of randomised-difference descent algorithm for stochastic convex optimisation
    Geng, Xiaoxue
    Huang, Gao
    Zhao, Wenxiao
    IET CONTROL THEORY AND APPLICATIONS, 2021, 15 (17): : 2183 - 2194
  • [7] THE PERTURBED PROX-PRECONDITIONED SPIDER ALGORITHM: NON-ASYMPTOTIC CONVERGENCE BOUNDS
    Fort, G.
    Moulines, E.
    2021 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2021, : 96 - 100
  • [8] Non-Asymptotic Guarantees for Sampling by Stochastic Gradient Descent
    A. G. Karagulyan
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2019, 54 : 71 - 78
  • [9] Non-Asymptotic Guarantees for Sampling by Stochastic Gradient Descent
    Karagulyan, A. G.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2019, 54 (02): : 71 - 78
  • [10] Further results on almost sure convergence of the stochastic gradient algorithm
    Radenkovic, MS
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 1999, 13 (03) : 161 - 181