Evaluation and screening of multivariate metal-organic frameworks for hydrogen storage

被引:0
|
作者
Xie, Yan-Yu [1 ]
Li, Xiao-Dong [1 ]
Zhang, Hui-Dong [1 ]
Liu, Xiu-Ying [1 ]
Wang, Jun-Fei [1 ]
机构
[1] College of Science, Henan University of Technology, Zhengzhou,450001, China
基金
中国国家自然科学基金;
关键词
Bars (metal) - Layered semiconductors - Linear regression - Metal-Organic Frameworks - Mortar - Supersaturation;
D O I
10.1016/j.ijhydene.2024.09.135
中图分类号
学科分类号
摘要
Multivariate metal-organic frameworks (MTV-MOFs) are characterized by their unique structural feature of incorporating multiple organic linkers and metal ions into a unified framework. This composite construction bestows MTV-MOFs with a broader spectrum of diverse and intricate properties compared to traditional single-component MOFs. In this study, the performance of 560 MTV-MOFs as hydrogen storage adsorbents has been thoroughly investigated. Firstly, the key structural parameters of materials, including density, pore occupied accessible volume, accessible surface area, and porosity were computed. Then, high-throughput Grand Canonical Monte Carlo (GCMC) simulations were employed to calculate hydrogen adsorption capacity of MTV-MOFs under hydrogen pressures of 100 bar at both 77 K and 298 K. Based on simulated results, the deliverable hydrogen capacity of these MTV-MOFs were deduced under both room temperature conditions (298 K, 97.2 bar → 298 K, 5 bar) and low-temperature conditions (77 K, 100 bar → 160 K, 5 bar). Through high-throughput screening, we identified top ten promising MTV-MOFs with the highest hydrogen storage capacity and conducted in-depth studies on their hydrogen adsorption properties. Furthermore, we developed a multivariate linear regression model to quantitatively predict the relationship between hydrogen adsorption capacity and their structural parameters for these MTV-MOFs. The predictions of this model align closely with the outcomes derived from GCMC simulations. The present study highlights the potential of MTV-MOFs as promising candidates for hydrogen storage applications, thereby providing valuable theoretical insights into the exploration of high-capacity hydrogen storage materials. © 2024
引用
下载
收藏
页码:1356 / 1366
相关论文
共 50 条
  • [1] Computational screening of hydrogen storage in experimental metal-organic frameworks
    Chung, Yongchul
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [2] Hydrogen storage in metal-organic frameworks
    Murray, Leslie J.
    Dinca, Mircea
    Long, Jeffrey R.
    CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) : 1294 - 1314
  • [3] Hydrogen storage in metal-organic frameworks
    Collins, David J.
    Zhou, Hong-Cai
    JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (30) : 3154 - 3160
  • [4] Hydrogen storage in metal-organic frameworks
    Furukawa, Hiroyasu
    Kapelewski, Matthew
    Jiang, Henry
    Runcevski, Tomce
    Lin, Yeh-Yung
    Barnett, Brandon
    Hou, Kaipeng
    Thiele, Gunther
    Long, Jeffrey
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [5] Hydrogen storage in metal-organic frameworks
    Sumida, Kenji
    Bloch, Eric D.
    Mason, Jarad A.
    Herm, Zoey R.
    Queen, Wendy L.
    Rogow, David L.
    Brown, Craig M.
    Long, Jeffrey R.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [6] Hydrogen Storage in Metal-Organic Frameworks
    Yubiao Sun
    Li Wang
    Wael A. Amer
    Haojie Yu
    Jing Ji
    Liang Huang
    Jie Shan
    Rongbai Tong
    Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23 : 270 - 285
  • [7] Hydrogen storage in metal-organic frameworks
    Lin, Xiang
    Jia, Junhua
    Hubberstey, Peter
    Schroeder, Martin
    Champness, Neil R.
    CRYSTENGCOMM, 2007, 9 (06): : 438 - 448
  • [8] Hydrogen storage in metal-organic frameworks
    Huang, Yue
    Ke, San-Huang
    ENERGY ENGINEERING AND ENVIRONMENTAL ENGINEERING, PTS 1AND 2, 2013, 316-317 : 946 - 949
  • [9] Hydrogen Storage in Metal-Organic Frameworks
    Sun, Yubiao
    Wang, Li
    Amer, Wael A.
    Yu, Haojie
    Ji, Jing
    Huang, Liang
    Shan, Jie
    Tong, Rongbai
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2013, 23 (02) : 270 - 285
  • [10] Metal-organic frameworks for hydrogen storage
    Hirscher, Michael
    Panella, Barbara
    Schmitz, Barbara
    MICROPOROUS AND MESOPOROUS MATERIALS, 2010, 129 (03) : 335 - 339