Deep Learning-based Knowledge Graph and Digital Twin Relationship Mining and Prediction Modeling

被引:0
|
作者
He F. [1 ]
Bai W. [2 ,3 ]
Wang Z. [4 ]
机构
[1] School of Public Security Information Technology and Intelligence, Criminal Investigation Police University of China, Liaoning, Shenyang
[2] Intelligent Policing Key Laboratory of Sichuan Province, Sichuan, Luzhou
[3] Department of Transportation Management, Sichuan Police College, Sichuan, Luzhou
[4] School of Investigation and Counter-Terrorism, Criminal Investigation Police University of China, Liaoning, Shenyang
关键词
Attention mechanism; Deep learning; Digital twin technology; Knowledge graph; TransE model;
D O I
10.2478/amns-2024-1618
中图分类号
学科分类号
摘要
The era of big data produces massive data, and carrying out data mining can effectively obtain effective information in huge data, which provides support for efficient decision-making and intelligent optimization. The purpose of this paper is to establish a digital twin system, preprocess massive data using random matrix theory, and design the knowledge graph construction process based on digital twin technology. The BERT model, attention mechanism, BiLSTM model, and conditional random field of the joint deep learning technology are used to identify the knowledge entities in the digital twin system, extract the knowledge relations through the Transformer model, and utilize the TransE model for the knowledge representation in order to construct the knowledge graph. Then, the constructed knowledge graph is combined with the multi-feature attention mechanism to build an anomaly data prediction model in the digital twin system. Finally, the effectiveness of the methods in this paper is validated through corresponding experiments. The TransE model is used for knowledge representation. The accuracy of ternary classification is higher than 80% in all cases, and the MR value decreases by up to 64 compared to the TransR model. The F1 composite score of the anomaly data prediction model is 0.911, and the AUC value of the validation of knowledge graph effectiveness is 0.702. Combining deep learning with the knowledge graph, the knowledge information can be realized in the digital twin system's accurate representation and enhance the data mining ability of the digital twin system. © 2024 Fangzhou He, published by Sciendo.
引用
收藏
相关论文
共 50 条
  • [1] The Character Relationship Mining Based on Knowledge Graph and Deep Learning
    He, Ying
    Yun, Hongyan
    Lin, Li
    5TH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING AND COMMUNICATIONS (BIGCOM 2019), 2019, : 22 - 27
  • [2] Technology Opportunity Discovery using Deep Learning-based Text Mining and a Knowledge Graph
    Lee, MyoungHoon
    Kim, Suhyeon
    Kim, Hangyeol
    Lee, Junghye
    TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2022, 180
  • [3] Knowledge Graph Representation Learning-Based Forest Fire Prediction
    Chen, Jiahui
    Yang, Yi
    Peng, Ling
    Chen, Luanjie
    Ge, Xingtong
    REMOTE SENSING, 2022, 14 (17)
  • [4] Deep reinforcement learning-based digital twin for droplet microfluidics control
    Gyimah, Nafisat
    Scheler, Ott
    Rang, Toomas
    Pardy, Tamas
    PHYSICS OF FLUIDS, 2023, 35 (08)
  • [5] Machine Learning-Based Digital Twin for Predictive Modeling in Wind Turbines
    Fahim, Muhammad
    Sharma, Vishal
    Cao, Tuan-Vu
    Canberk, Berk
    Duong, Trung Q.
    IEEE ACCESS, 2022, 10 : 14184 - 14194
  • [6] A Machine Learning-based Digital Twin for Electric Vehicle Battery Modeling
    Alamin, Khaled Sidahmed Sidahmed
    Chen, Yukai
    Macii, Enrico
    Poncino, Massimo
    Vinco, Sara
    2022 IEEE INTERNATIONAL CONFERENCE ON OMNI-LAYER INTELLIGENT SYSTEMS (IEEE COINS 2022), 2022, : 258 - 263
  • [7] Deep Learning-Based Knowledge Graph Generation for COVID-19
    Kim, Taejin
    Yun, Yeoil
    Kim, Namgyu
    SUSTAINABILITY, 2021, 13 (04) : 1 - 20
  • [8] A Brief Survey on Deep Learning-Based Temporal Knowledge Graph Completion
    Jia, Ningning
    Yao, Cuiyou
    Applied Sciences (Switzerland), 2024, 14 (19):
  • [9] Deep Learning Based Traffic Prediction Method for Digital Twin Network
    Lai, Junyu
    Chen, Zhiyong
    Zhu, Junhong
    Ma, Wanyi
    Gan, Lianqiang
    Xie, Siyu
    Li, Gun
    COGNITIVE COMPUTATION, 2023, 15 (05) : 1748 - 1766
  • [10] Deep Learning Based Traffic Prediction Method for Digital Twin Network
    Junyu Lai
    Zhiyong Chen
    Junhong Zhu
    Wanyi Ma
    Lianqiang Gan
    Siyu Xie
    Gun Li
    Cognitive Computation, 2023, 15 : 1748 - 1766