The measurement of muscle oxygenation levels by near infrared spectroscopy imaging technology is hindered by light scattering and absorption in tissues. This leads to a limited measurement range and necessitates a significant amount of time for optical signal acquisition. Therefore, this article used photosensitive π-conjugated materials for measurement optimization in near infrared spectroscopy imaging technology. Firstly, photosensitive π-conjugated materials were applied to near infrared spectrometers for spectral measurements. Secondly, the elimination of uninformative variables and the ratio of regression coefficients to spectral residuals were used for wavelength screening. Subsequently, the spectral data was preprocessed, and principal component analysis was used for quantitative correction. Finally, the effectiveness of near infrared spectroscopy imaging technology optimized using photosensitive π-conjugated materials was verified through experiments. In terms of measurement range, the near infrared spectrometer optimized using photosensitive π-conjugated materials expanded the measurement range by 42.7%; in terms of optical signal acquisition time and measurement accuracy, the acquisition time of near infrared spectrometers optimized with photosensitive π-conjugated materials was shorter than that of near infrared spectrometers optimized without photosensitive π-conjugated materials. In terms of measurement accuracy, the near infrared spectrometer optimized using photosensitive π-conjugated materials had higher accuracy, both exceeding 98%. The use of photosensitive π-conjugated materials in near infrared spectral imaging analysis had good monitoring effects, and could quickly, accurately, and comprehensively measure muscle oxygenation levels, making it very suitable for application in sports. Copyright © 2024 by author(s)