Brain Tumor Recurrence vs. Radiation Necrosis Classification and Patient Survivability Prediction
被引:0
|
作者:
Sadique, M. S.
论文数: 0引用数: 0
h-index: 0
机构:
Old Dominion Univ, Vis Lab, Norfolk, VA 23529 USA
Old Dominion Univ, Dept Elect & Comp Engn, Norfolk, VA 23529 USAOld Dominion Univ, Vis Lab, Norfolk, VA 23529 USA
Sadique, M. S.
[1
,2
]
论文数: 引用数:
h-index:
机构:
Farzana, W.
[1
,2
]
Temtam, A.
论文数: 0引用数: 0
h-index: 0
机构:
Old Dominion Univ, Vis Lab, Norfolk, VA 23529 USA
Old Dominion Univ, Dept Elect & Comp Engn, Norfolk, VA 23529 USAOld Dominion Univ, Vis Lab, Norfolk, VA 23529 USA
Temtam, A.
[1
,2
]
Lappinen, E.
论文数: 0引用数: 0
h-index: 0
机构:
Eastern Virginia Med Sch, Radiat Oncol & Biophys, Norfolk, VA 23507 USAOld Dominion Univ, Vis Lab, Norfolk, VA 23529 USA
Lappinen, E.
[3
]
Vossough, A.
论文数: 0引用数: 0
h-index: 0
机构:
Childrens Hosp Philadelphia, Dept Radiol, Philadelphia, PA 19104 USAOld Dominion Univ, Vis Lab, Norfolk, VA 23529 USA
Vossough, A.
[4
]
Iftekharuddin, K. M.
论文数: 0引用数: 0
h-index: 0
机构:
Old Dominion Univ, Vis Lab, Norfolk, VA 23529 USA
Old Dominion Univ, Dept Elect & Comp Engn, Norfolk, VA 23529 USAOld Dominion Univ, Vis Lab, Norfolk, VA 23529 USA
Iftekharuddin, K. M.
[1
,2
]
机构:
[1] Old Dominion Univ, Vis Lab, Norfolk, VA 23529 USA
[2] Old Dominion Univ, Dept Elect & Comp Engn, Norfolk, VA 23529 USA
[3] Eastern Virginia Med Sch, Radiat Oncol & Biophys, Norfolk, VA 23507 USA
[4] Childrens Hosp Philadelphia, Dept Radiol, Philadelphia, PA 19104 USA
GB (Glioblastoma WHO Grade 4) is the most aggressive type of brain tumor in adults that has a short survival rate even after aggressive treatment with surgery and radiation therapy. The changes in magnetic resonance imaging (MRI) for patients with GB after radiotherapy are indicative of either radiation-induced necrosis (RN) or recurrent brain tumor (rBT). Screening for rBT and RN at an early stage is crucial for facilitating faster treatment and better outcomes for the patients. Differentiating rBT from RN is challenging as both may present with similar radiological and clinical characteristics on MRI. Moreover, learning-based rBT versus RN classification using MRI may suffer from class imbalance due to a lack of patient data. While synthetic data generation using generative models has shown promise to address class imbalances, the underlying data representation may be different in synthetic or augmented data. This study proposes computational modeling with statistically rigorous repeated random sub-sampling to balance the subset sample size for rBT and RN classification. The proposed pipeline includes multiresolution radiomic feature (MRF) extraction followed by feature selection with statistical significance testing (p<0.05). The five-fold cross validation results show the proposed model with MRF features classifies rBT from RN with an area under the curve (AUC) of 0.892 +/- 0.055. Moreover, considering the dependence between survival time and censoring time (where patients are not followed up until death), the feasibility of using MRF radiomic features as a non-invasive biomarker to identify patients who are at higher risk of recurrence or radiation necrosis is demonstrated. The cross-validated results show that the MRF model provides the best overall survival prediction with an AUC of 0.77 +/- 0.032. Comparison with state-of-the-art methods suggest the proposed method is effective in RN versus rBT classification and patient survivability prediction.
机构:
Univ Campania Luigi Vanvitelli, Dept Precis Med, Nucl Med Unit, I-80138 Naples, ItalyUniv Campania Luigi Vanvitelli, Dept Precis Med, Nucl Med Unit, I-80138 Naples, Italy
Cuccurullo, Vincenzo
Di Stasio, Giuseppe Danilo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Campania Luigi Vanvitelli, Dept Precis Med, Nucl Med Unit, I-80138 Naples, ItalyUniv Campania Luigi Vanvitelli, Dept Precis Med, Nucl Med Unit, I-80138 Naples, Italy
Di Stasio, Giuseppe Danilo
Cascini, Giuseppe Lucio
论文数: 0引用数: 0
h-index: 0
机构:
Magna Graecia Univ Catanzaro, Nucl Med Unit, Dept Diagnost Imaging, I-88100 Catanzaro, ItalyUniv Campania Luigi Vanvitelli, Dept Precis Med, Nucl Med Unit, I-80138 Naples, Italy
Cascini, Giuseppe Lucio
Gatta, Gianluca
论文数: 0引用数: 0
h-index: 0
机构:
Univ Campania Luigi Vanvitelli, Dept Precis Med, Nucl Med Unit, I-80138 Naples, ItalyUniv Campania Luigi Vanvitelli, Dept Precis Med, Nucl Med Unit, I-80138 Naples, Italy
Gatta, Gianluca
Bianco, Cataldo
论文数: 0引用数: 0
h-index: 0
机构:
Magna Graecia Univ Catanzaro, Nucl Med Unit, Dept Diagnost Imaging, I-88100 Catanzaro, ItalyUniv Campania Luigi Vanvitelli, Dept Precis Med, Nucl Med Unit, I-80138 Naples, Italy
机构:
Univ Toronto, Toronto Western Hosp, Univ Hlth Network, Div Neurosurg, Toronto, ON M5T 2S8, CanadaUniv Toronto, Toronto Western Hosp, Univ Hlth Network, Div Neurosurg, Toronto, ON M5T 2S8, Canada
Parvez, Kashif
Parvez, Aatif
论文数: 0引用数: 0
h-index: 0
机构:
Univ Saskatchewan, Royal Univ Hosp, Dept Med Imaging, Saskatoon, SK S7N 0W8, CanadaUniv Toronto, Toronto Western Hosp, Univ Hlth Network, Div Neurosurg, Toronto, ON M5T 2S8, Canada
Parvez, Aatif
Zadeh, Gelareh
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toronto, Toronto Western Hosp, Univ Hlth Network, Div Neurosurg, Toronto, ON M5T 2S8, CanadaUniv Toronto, Toronto Western Hosp, Univ Hlth Network, Div Neurosurg, Toronto, ON M5T 2S8, Canada