Microscopic mechanism of oxygen consumption inhibitor delaying the oxidation of coal

被引:0
|
作者
Wang, Zhen [1 ]
Hao, Chaoyu [1 ]
Liu, Xiaofei [1 ]
Deng, Cunbao [1 ]
He, Wenhao [1 ]
Jin, Jingyu [1 ]
Zhou, Bin [1 ]
机构
[1] Taiyuan Univ Technol, Coll Safety & Emergency Management Engn, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
Coal spontaneous combustion; Quantum chemistry; Sulfur-containing side chain group; Microscopic mechanism; Oxygen shielding; Complexation; TEMPERATURE OXIDATION;
D O I
10.1016/j.jlp.2024.105438
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In order to inhibit the coal-oxygen complex that triggers spontaneous coal combustion, a retardant consisting of sodium alginate solution, sodium bicarbonate, inorganic salt MgCl2 and deoxidiser that can achieve multiple effects of hysteresis and oxygen depletion was developed. Taking the sulfur-containing side-chain reactive group of coal molecule -CH2-SH as the object of study, the Gaussian 16W procedure and density-functional-transfer theory (DFT) were applied to investigate the electrostatic potential and reaction tendency, oxygen adsorption capacity, front-line orbitals, natural bonding capacity, and oxygen adsorption capacity of the reactive group before and after the formation of the complexes with Na+ and Mg2+, using the solvation effect at the level of B3LYP/6-31G(d, p), respectively. The changes of electrostatic potential and reaction tendency, oxygen adsorption, front orbitals, natural bonding orbitals and charge transfer before and after the formation of complexes between -CH2-SH reactive groups and Na+, Mg2+, respectively. Comparative analysis of the interaction with oxygen before and after the formation of coordination blocking structure of coal and inorganic salts in gaseous environment, aqueous environment and retarded oxygen-depleting sodium alginate blocking solution environment, respectively. The calculated results show that the side chain of the aromatic ring of the raw coal is the active site for easy adsorption of oxygen, and the stability of the coordination blocking structure is significantly enhanced under the environment of hysteretic oxygen-depleting sodium alginate gel blocking agent, and the adsorption of oxygen before and after the coal molecule combines with Na+ and Mg2+ is the weakest under the environment of hysteretic oxygen-depleting sodium alginate gel blocking agent; The absolute value of the HOMO orbital energy increases the most, and the energy level difference (ELUMO - EHOMO) of the complexes increases the most; the natural bonding orbital analysis reveals that the lone pair of electrons of S atoms in -CH2-SH under the environment of hysteresis oxygen depletion sodium alginate gel blocker has a strong coordination effect with Na+ and Mg2+. In the hysteresis oxygen depletion sodium alginate gel resist environment, the stability of the coordination blocking structure is strengthened due to the moderateness of the dielectric constant, and its oxygen depletion also reduces the number of O2 molecules, which further reduces the adsorption and collision chances between the two, and a more desirable blocking effect can be obtained. The results reveal the micro-mechanism of the hysteresis oxygen depletion inhibitor in preventing spontaneous combustion of coal, which can provide a reference for further improving the inhibition effect of the inhibitor.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Coal oxidation at low temperatures: oxygen consumption, oxidation products, reaction mechanism and kinetic modelling
    Wang, HH
    Dlugogorski, BZ
    Kennedy, EM
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2003, 29 (06) : 487 - 513
  • [2] Microscopic mechanism of α-rhombic crystal boron nanocluster oxidation in oxygen
    Wang, Jinghui
    Zhu, Baozhong
    Sun, Yunlan
    FUEL, 2022, 310
  • [3] INITIAL STAGES OF OXIDATION OF COAL WITH MOLECULAR OXYGEN I - EFFECT OF TIME TEMPERATURE + COAL RANK ON RATE OF OXYGEN CONSUMPTION
    CARPENTER, DL
    GIDDINGS, DG
    FUEL, 1964, 43 (04) : 247 - &
  • [4] Experimental Study on the Characteristic of Oxygen Consumption of Coal at Low-Temperature Oxidation
    Zuo Qiuling
    Zhang Jianguo
    Wang Guoji
    PROGRESS IN SAFETY SCIENCE AND TECHNOLOGY, VOL. VIII, PTS A AND B, 2010, 8 : 1456 - 1459
  • [5] MECHANISM OF THE OXIDATION OF COAL
    JONES, RE
    TOWNEND, DTA
    NATURE, 1945, 155 (3936) : 424 - 425
  • [6] Study on the Microscopic Mechanism of Spontaneous Combustion and Oxidation Kinetics of Water-Leached Coal
    Cao, Naifu
    Wang, Gang
    Liang, Yuntao
    JOURNAL OF CHEMISTRY, 2021, 2021
  • [7] Microscopic mechanism of Si oxidation
    Shiraishi, K
    Kageshima, H
    Uematsu, M
    PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON THE PHYSICS OF SEMICONDUCTORS, PTS I AND II, 2001, 87 : 309 - 312
  • [8] Oxygen consumption by a bituminous coal: Time dependence of the rate of oxygen consumption
    Wang, HH
    Dlugogorski, BZ
    Kennedy, EM
    COMBUSTION SCIENCE AND TECHNOLOGY, 2002, 174 (09) : 147 - 167
  • [9] Experimental Study on the Influence of Staged Oxygen Consumption on the Oxidation Characteristics of Coal Spontaneous Combustion
    Guo, Jun
    Wang, Lei
    Liu, Yin
    Chen, Changming
    Cai, Guobin
    Du, Wentao
    FIRE-SWITZERLAND, 2024, 7 (10):
  • [10] INITIAL STAGES OF OXIDATION OF COAL WITH MOLECULAR OXYGEN .3. EFFECT OF PARTICLE SIZE ON RATE OF OXYGEN CONSUMPTION
    CARPENTER, DL
    SERGEANT, GD
    FUEL, 1966, 45 (04) : 311 - +