Improved phase prediction of high-entropy alloys assisted by imbalance learning

被引:2
|
作者
Zhang, Libin [1 ]
Oh, Chang-Seok [2 ]
Choi, Yoon Suk [1 ]
机构
[1] Pusan Natl Univ, Sch Mat Sci & Engn, Busan 46241, South Korea
[2] Korea Inst Mat Sci, Chang Won 51508, South Korea
基金
新加坡国家研究基金会;
关键词
High-entropy alloys; Machine learning; Phase prediction; Imbalance learning; SOLID-SOLUTION PHASE; MECHANICAL-PROPERTIES; SUPERALLOYS; SELECTION; SMOTE;
D O I
10.1016/j.matdes.2024.113310
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Predicting phase formation is crucial in novel high-entropy alloys (HEAs) design. Herein, machine learning and imbalance learning algorithms were combined together to improve the phase prediction of HEAs. In this work, an extensive database by collecting experimental data from published literature was constructed, and the key features affecting the phase formation of HEAs were filtered out by performing a three-step feature selection process. Then, extreme gradient boosting (XGB) models were constructed to categorize phase structures of HEAs with high accuracies. Moreover, the Synthetic Minority Oversampling TEchnique (SMOTE) algorithm was employed for data oversampling to address the data imbalance issue. It was found that imbalanced learning significantly improves the phase prediction, particularly for the minority class, without costing the overall prediction accuracy. Finally, a machine learning-base protocol was proposed to integrate established models to classify the phase formation of HEAs into seven phase labels, and its generalization ability was verified. The present work provides a practical approach in predicting phase structures of HEAs and enhances the efficiency in developing advanced HEAs.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Machine-learning phase prediction of high-entropy alloys
    Huang, Wenjiang
    Martin, Pedro
    Zhuang, Houlong L.
    ACTA MATERIALIA, 2019, 169 : 225 - 236
  • [2] Phase prediction of high-entropy alloys based on machine learning and an improved information fusion approach
    Chen, Cun
    Han, Xiaoli
    Zhang, Yong
    Liaw, Peter K.
    Ren, Jingli
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 239
  • [3] Phase formation prediction of high-entropy alloys: a deep learning study
    Zhu, Wenhan
    Huo, Wenyi
    Wang, Shiqi
    Wang, Xu
    Ren, Kai
    Tan, Shuyong
    Fang, Feng
    Xie, Zonghan
    Jiang, Jianqing
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 18 : 800 - 809
  • [4] Quantum machine-learning phase prediction of high-entropy alloys
    Brown, Payden
    Zhuang, Houlong
    MATERIALS TODAY, 2023, 63 : 18 - 31
  • [5] Structure prediction in high-entropy alloys with machine learning
    Zhao, D. Q.
    Pan, S. P.
    Zhang, Y.
    Liaw, P. K.
    Qiao, J. W.
    APPLIED PHYSICS LETTERS, 2021, 118 (23)
  • [6] Enhanced phase prediction of high-entropy alloys through machine learning and data augmentation
    Wu, Song
    Song, Zihao
    Wang, Jianwei
    Niu, Xiaobin
    Chen, Haiyuan
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2025, 27 (02) : 717 - 729
  • [7] Phase Prediction of High-Entropy Alloys by Integrating Criterion and Machine Learning Recommendation Method
    Hou, Shuai
    Li, Yujiao
    Bai, Meijuan
    Sun, Mengyue
    Liu, Weiwei
    Wang, Chao
    Tetik, Halil
    Lin, Dong
    MATERIALS, 2022, 15 (09)
  • [8] Machine learning-assisted prediction and interpretation of electrochemical corrosion behavior in high-entropy alloys
    Zou, Yun
    Qian, Jiahao
    Wang, Xu
    Li, Songlin
    Li, Yang
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 244
  • [9] Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning
    Yao-Jen Chang
    Chia-Yung Jui
    Wen-Jay Lee
    An-Chou Yeh
    JOM, 2019, 71 : 3433 - 3442
  • [10] Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning
    Chang, Yao-Jen
    Jui, Chia-Yung
    Lee, Wen-Jay
    Yeh, An-Chou
    JOM, 2019, 71 (10) : 3433 - 3442