Temperature-dependent dielectric measurements of polypyrrole/zinc cobalt oxide nanocomposites by impedance spectroscopy

被引:0
|
作者
Ananda, Sutar Rani [1 ,2 ]
Kumari, Latha [1 ]
机构
[1] BMS Coll Engn, Dept Phys, Bangalore, Karnataka, India
[2] JAIN, Ctr Res Funct Mat CRFM, Jain Global Campus, Bengaluru 562112, Karnataka, India
关键词
Polypyrrole; Zinc cobalt oxide; Cole-Cole plot; Dielectric properties; Equivalent circuit fitting; CONDUCTION MECHANISM; BEHAVIOR;
D O I
10.1016/j.jallcom.2024.176894
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study characterizes the conduction mechanism in Zinc Cobalt oxide/Polypyrrole nanocomposites (ZCO/PPy NCs) concerning temperature (303-453 K) and frequency (100 Hz-1 MHz). To obtain the ZCO/PPy nano- composites for the experiments, we used the in-situ chemical polymerization technique to disseminate varying weight percentages of ZCO nanoparticles (ZCO NPs) in the PPy matrix. The total electrical conductivity graph consists of a step-like feature of a plateau and dispersive regimes. The dispersive zone, which follows Jonscher's power law, correlates to AC conductivity, whereas the plateau region, which corresponds to DC conductivity, is thermally activated. The extracted DC conductivity values are of the order of 10-4-4 S/m at 303 K. The conduction mechanism in ZCO/PPy nanocomposites is depicted by the Non-Overlapping Large Polaron Tunneling (NSPT) model. The dielectric studies confirm the non-Debye-like relaxation in PPy and ZCO/PPy NCs. In addition, the complex impedance and equivalent circuit analysis showed maximum contribution from grain and grain boundaries. The grain and grain boundary resistances are of the order of 103 3 Omega, depicting the electrical homogeneity in the PPy and ZCO/PPy nanocomposites.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Temperature-dependent impedance spectroscopy of monovalent double tungstate oxide
    Dhiaf, M.
    Borchani, S. Megdiche
    Gargouri, M.
    Guidara, K.
    Megdiche, M.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 767 : 763 - 774
  • [2] Low-frequency and temperature-dependent dielectric spectroscopy investigations on polypyrrole nanoparticles
    Rawal, Ishpal
    Kaur, Amarjeet
    PHILOSOPHICAL MAGAZINE, 2015, 95 (13) : 1399 - 1413
  • [3] Room temperature ac conductivity, dielectric properties and impedance analysis of polypyrrole-zinc cobalt oxide (PPy/ZCO) composites
    Sutar, Rani Ananda
    Kumari, Latha
    Murugendrappa, M., V
    PHYSICA B-CONDENSED MATTER, 2019, 573 : 36 - 44
  • [4] Temperature-dependent dielectric and magnetic properties of Mn doped zinc oxide nanoparticles
    Khan, Imran
    Khan, Shakeel
    Khan, Wasi
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2014, 26 : 516 - 526
  • [5] Temperature-Dependent Dielectric Properties of Al/Epoxy Nanocomposites
    Wang, Zijun
    Zhou, Wenying
    Sui, Xuezhen
    Dong, Lina
    Cai, Huiwu
    Zuo, Jing
    Chen, Qingguo
    JOURNAL OF ELECTRONIC MATERIALS, 2016, 45 (06) : 3069 - 3078
  • [6] Temperature-Dependent Dielectric Properties of Al/Epoxy Nanocomposites
    Zijun Wang
    Wenying Zhou
    Xuezhen Sui
    Lina Dong
    Huiwu Cai
    Jing Zuo
    Qingguo Chen
    Journal of Electronic Materials, 2016, 45 : 3069 - 3078
  • [7] Techniques for temperature-dependent dielectric measurements: a review
    Cilia, Federico
    Di Meo, Simona
    Farrugia, Lourdes
    Bonello, Julian
    Farhat, Iman
    Dimech, Evan Joe
    Pasian, Marco
    Sammut, Charles, V
    PROCEEDINGS OF THE 2022 21ST MEDITERRANEAN MICROWAVE SYMPOSIUM (MMS 2022), 2022, : 345 - 348
  • [8] Temperature-dependent structural behaviour of samarium cobalt oxide
    Rowles, Matthew R.
    Wang, Cheng-Cheng
    Chen, Kongfa
    Li, Na
    He, Shuai
    Jiang, San-Ping
    POWDER DIFFRACTION, 2017, 32 : S38 - S42
  • [9] TEMPERATURE-DEPENDENT ELECTRICAL-CONDUCTIVITY ZINC OF OXIDE
    JAIN, DK
    GARG, JC
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 1979, 17 (01) : 10 - 12
  • [10] TEMPERATURE-DEPENDENT ELECTRICAL CONDUCTIVITY OF ZINC OXIDE.
    Jain, D.K.
    Garg, J.C.
    Indian Journal of Pure and Applied Physics, 1979, 17 (01): : 10 - 12