An Investigation of the Mechanical Properties of Flax/Basalt Epoxy Hybrid Composites from a Sustainability Perspective

被引:1
|
作者
Panico, Martina [1 ]
Cozzolino, Ersilia [1 ]
Papa, Ilaria [1 ]
Taha, Iman [2 ]
Lopresto, Valentina [1 ]
机构
[1] Univ Naples Federico II, Dept Chem Mat & Prod Engn, Ple Tecchio 80, I-80125 Naples, Italy
[2] Aalen Univ, Sustainable Mat Polymer Engn, Beethovenstr 1, D-73430 Aalen, Germany
关键词
biocomposites; basalt; flax; epoxy resin; hybrid composite materials; sustainability; lightweight materials; BASALT FIBERS; GLASS-FIBERS; FLAX; BEHAVIOR; HYBRIDIZATION; TENSILE;
D O I
10.3390/polym16192839
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Currently, sustainability plays a central role in the response to global challenges, strongly influencing decisions in various sectors. From this perspective, global efforts to explore inventive and eco-friendly solutions to address the demands of industrialization and large-scale production are being made. Bio-based composites needed for lightweight applications benefit from the integration of natural fibers, due to their lower specific weight compared to synthetic fibers, contributing to the overall reduction in the weight of such structures without compromising the mechanical performance. Nevertheless, challenges arise when using natural fibers in composite laminates and hybridization seems to be a solution. However, there is still a lack of knowledge in the literature regarding the strategies and possibilities for reducing laminate thickness, without sacrificing the mechanical performance. This work aims to fill this knowledge gap by investigating the possibility of reducing the laminate thickness in hybrid flax/basalt composites made of plies, organized in the same stacking sequence, through only varying their number. Tensile, Charpy, flexural, and drop-weight tests were carried out for the mechanical characterization of the composites. The results obtained confirm the feasibility of achieving thinner hybrid composites, thus contributing to sustainability, while still having acceptable mechanical properties for structural applications.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Investigation of the mechanical properties of carbon and basalt fiber laminated hybrid epoxy composites
    Ozsoy, Mehmet Iskender
    PAMUKKALE UNIVERSITY JOURNAL OF ENGINEERING SCIENCES-PAMUKKALE UNIVERSITESI MUHENDISLIK BILIMLERI DERGISI, 2022, 28 (04): : 499 - 505
  • [2] Hybrid Epoxy Composites Reinforced with Flax Fiber and Basalt Fiber
    Matykiewicz, Danuta
    Boguslawski, Maciej
    ADVANCES IN MANUFACTURING II, VOL 4 - MECHANICAL ENGINEERING, 2019, : 639 - 650
  • [3] Investigation into the fatigue properties of flax fibre epoxy composites and hybrid composites based on flax and glass fibres
    Barouni, Antigoni
    Lupton, Colin
    Jiang, Chulin
    Saifullah, Abu
    Giasin, Khaled
    Zhang, Zhongyi
    Dhakal, Hom N.
    COMPOSITE STRUCTURES, 2022, 281
  • [4] Flax/basalt/E-glass Fibers Reinforced Epoxy Composites with Enhanced Mechanical Properties
    Abd El-Baky, M. A.
    Attia, Mohamed A.
    Abdelhaleem, Mostafa M.
    Hassan, Mohamad A.
    JOURNAL OF NATURAL FIBERS, 2022, 19 (03) : 954 - 968
  • [5] Mechanical and thermal properties of flax/carbon/kevlar based epoxy hybrid composites
    Gowda, Yashas T. G.
    Vinod, A.
    Madhu, P.
    Rangappa, Sanjay Mavinkere
    Siengchin, Suchart
    Jawaid, Mohammad
    POLYMER COMPOSITES, 2022, 43 (08) : 5649 - 5662
  • [6] Fatigue behaviour of flax-basalt/epoxy hybrid composites in comparison with non-hybrid composites
    Seghini, Maria Carolina
    Touchard, Fabienne
    Sarasini, Fabrizio
    Chocinski-Arnault, Laurence
    Ricciardi, Maria Rosaria
    Antonucci, Vincenza
    Tirillo, Jacopo
    INTERNATIONAL JOURNAL OF FATIGUE, 2020, 139
  • [7] Experimental Investigation on Volume Fraction of Mechanical and Physical Properties of Flax and Bamboo Fibers Reinforced Hybrid Epoxy Composites
    Sathish, S.
    Kumaresan, K.
    Prabhu, L.
    Vigneshkumar, N.
    POLYMERS & POLYMER COMPOSITES, 2017, 25 (03): : 229 - 235
  • [8] Investigation on cryogenic mechanical properties of basalt fiber-reinforced epoxy composites
    Sun, Wentao
    Wu, Zhixiong
    Huang, Chuanjun
    Wang, Zekun
    Huang, Rongjin
    Gong, Linghui
    Nishimura, Arata
    Zhou, Yuan
    Li, Laifeng
    CRYOGENICS, 2023, 132
  • [9] Investigation of Mechanical Properties for Basalt Fiber/Epoxy Resin Composites Modified with La
    Li, Chong
    Wang, Haoyu
    Zhao, Xiaolei
    Fu, Yudong
    He, Xiaodong
    Song, Yiguo
    COATINGS, 2021, 11 (06)
  • [10] Influence of reprocessing cycles on the morphological, thermal and mechanical properties of flax/basalt hybrid polypropylene composites
    Sergi, Claudia
    Tirillo, Jacopo
    Iacovacci, Cinzia
    Sarasini, Fabrizio
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2023, 36