DMRFNet: Deep Multimodal Reasoning and Fusion for Visual Question Answering and explanation generation

被引:0
|
作者
Zhang, Weifeng [1 ]
Yu, Jing [2 ]
Zhao, Wenhong [3 ]
Ran, Chuan [4 ]
机构
[1] Jiaxing University, Zhejiang, China
[2] Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
[3] Nanhu College, Jiaxing University, Zhejiang, China
[4] IBM Corporation, NC, United States
关键词
Artificial intelligence - Natural language processing systems - Visual languages;
D O I
暂无
中图分类号
学科分类号
摘要
Visual Question Answering (VQA), which aims to answer questions in natural language according to the content of image, has attracted extensive attention from artificial intelligence community. Multimodal reasoning and fusion is a central component in recent VQA models. However, most existing VQA models are still insufficient to reason and fuse clues from multiple modalities. Furthermore, they are lack of interpretability since they disregard the explanations. We argue that reasoning and fusing multiple relations implied in multimodalities contributes to more accurate answers and explanations. In this paper, we design an effective multimodal reasoning and fusion model to achieve fine-grained multimodal reasoning and fusion. Specifically, we propose Multi-Graph Reasoning and Fusion (MGRF) layer, which adopts pre-trained semantic relation embeddings, to reason complex spatial and semantic relations between visual objects and fuse these two kinds of relations adaptively. The MGRF layers can be further stacked in depth to form Deep Multimodal Reasoning and Fusion Network (DMRFNet) to sufficiently reason and fuse multimodal relations. Furthermore, an explanation generation module is designed to justify the predicted answer. This justification reveals the motive of the model's decision and enhances the model's interpretability. Quantitative and qualitative experimental results on VQA 2.0, and VQA-E datasets show DMRFNet's effectiveness. © 2021 Elsevier B.V.
引用
收藏
页码:70 / 79
相关论文
共 50 条
  • [1] DMRFNet: Deep Multimodal Reasoning and Fusion for Visual Question Answering and explanation generation
    Zhang, Weifeng
    Yu, Jing
    Zhao, Wenhong
    Ran, Chuan
    INFORMATION FUSION, 2021, 72 : 70 - 79
  • [2] Multimodal feature fusion by relational reasoning and attention for visual question answering
    Zhang, Weifeng
    Yu, Jing
    Hu, Hua
    Hu, Haiyang
    Qin, Zengchang
    INFORMATION FUSION, 2020, 55 (55) : 116 - 126
  • [3] Faithful Multimodal Explanation for Visual Question Answering
    Wu, Jialin
    Mooney, Raymond J.
    BLACKBOXNLP WORKSHOP ON ANALYZING AND INTERPRETING NEURAL NETWORKS FOR NLP AT ACL 2019, 2019, : 103 - 112
  • [4] Multimodal Learning and Reasoning for Visual Question Answering
    Ilievski, Ilija
    Feng, Jiashi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [5] Visual Question Answering on CLEVR Dataset via Multimodal Fusion and Relational Reasoning
    Allahyari, Abbas
    Borna, Keivan
    2021 52ND ANNUAL IRANIAN MATHEMATICS CONFERENCE (AIMC), 2021, : 74 - 76
  • [6] Multimodal Graph Reasoning and Fusion for Video Question Answering
    Zhang, Shuai
    Wang, Xingfu
    Hawbani, Ammar
    Zhao, Liang
    Alsamhi, Saeed Hamood
    2022 IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, 2022, : 1410 - 1415
  • [7] ViCLEVR: a visual reasoning dataset and hybrid multimodal fusion model for visual question answering in Vietnamese
    Tran, Khiem Vinh
    Phan, Hao Phu
    Van Nguyen, Kiet
    Nguyen, Ngan Luu Thuy
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [8] Multimodal Knowledge Reasoning for Enhanced Visual Question Answering
    Hussain, Afzaal
    Maqsood, Ifrah
    Shahzad, Muhammad
    Fraz, Muhammad Moazam
    2022 16TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS, SITIS, 2022, : 224 - 230
  • [9] MUREL: Multimodal Relational Reasoning for Visual Question Answering
    Cadene, Remi
    Ben-younes, Hedi
    Cord, Matthieu
    Thome, Nicolas
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1989 - 1998
  • [10] Multimodal deep fusion for image question answering
    Zhang, Weifeng
    Yu, Jing
    Wang, Yuxia
    Wang, Wei
    KNOWLEDGE-BASED SYSTEMS, 2021, 212