Global and Compact Video Context Embedding for Video Semantic Segmentation

被引:0
|
作者
Sun, Lei [1 ,2 ]
Liu, Yun [3 ]
Sun, Guolei [2 ]
Wu, Min [3 ]
Xu, Zhijie [4 ]
Wang, Kaiwei [1 ]
Van Gool, Luc [2 ]
机构
[1] Zhejiang Univ, Natl Res Ctr Opt Instrumentat, Hangzhou 310027, Peoples R China
[2] Swiss Fed Inst Technol, Comp Vis Lab, CH-8092 Zurich, Switzerland
[3] ASTAR, Inst Infocomm Res I2R, Singapore 138632, Singapore
[4] Univ Huddersfield, Ctr Visual & Immers Comp, Huddersfield HD1 3DH, England
来源
IEEE ACCESS | 2024年 / 12卷
基金
中国国家自然科学基金;
关键词
Semantic segmentation; Context modeling; Feature extraction; Computational modeling; Sun; Optical flow; Shape; Video semantic segmentation; global video context; compact video context; video context embedding; NETWORK;
D O I
10.1109/ACCESS.2024.3409150
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Intuitively, global video context could benefit video semantic segmentation (VSS) if it is designed to simultaneously model global temporal and spatial dependencies for a holistic understanding of the semantic scenes in a video clip. However, we found that the existing VSS approaches focus only on modeling local video context. This paper attempts to bridge this gap by learning global video context for VSS. Apart from the global nature, the video context should also be compact when considering the large number of video feature tokens and the redundancy among nearby video frames. Then, we embed the learned global and compact video context into the features of the target video frame to improve the distinguishability. The proposed VSS method is dubbed Global and Compact Video Context Embedding (GCVCE). With the compact nature, the number of global context tokens is very limited so that GCVCE is flexible and efficient for VSS. Since it may be too challenging to directly abstract a large number of video feature tokens into a small number of global context tokens, we further design a Cascaded Convolutional Downsampling (CCD) module before GCVCE to help it work better. 1.6% improvement in mIoU on the popular VSPW dataset compared to previous state-of-the-art methods demonstrate the effectiveness and efficiency of GCVCE and CCD for VSS. Code and models will be made publicly available.
引用
收藏
页码:135589 / 135600
页数:12
相关论文
共 50 条
  • [1] A Continuous Semantic Embedding Method for Video Compact Representation
    Han, Tingting
    Qi, Yuankai
    Zhu, Suguo
    ELECTRONICS, 2021, 10 (24)
  • [2] Video Object Segmentation Using Global and Instance Embedding Learning
    Ge, Wenbin
    Lu, Xiankai
    Shen, Jianbing
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 16831 - 16840
  • [3] CONTEXT PROPAGATION FROM PROPOSALS FOR SEMANTIC VIDEO OBJECT SEGMENTATION
    Wang, Tinghuai
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 256 - 260
  • [4] Learning Local and Global Temporal Contexts for Video Semantic Segmentation
    Sun, Guolei
    Liu, Yun
    Ding, Henghui
    Wu, Min
    Van Gool, Luc
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (10) : 6919 - 6934
  • [5] Spatiotemporal Semantic Video Segmentation
    Galmar, E.
    Athanasiadis, Th
    Huet, B.
    Avrithis, Y.
    2008 IEEE 10TH WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, VOLS 1 AND 2, 2008, : 578 - +
  • [6] Multi-Granularity Context Network for Efficient Video Semantic Segmentation
    Liang, Zhiyuan
    Dai, Xiangdong
    Wu, Yiqian
    Jin, Xiaogang
    Shen, Jianbing
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 3163 - 3175
  • [7] Clockwork Convnets for Video Semantic Segmentation
    Shelhamer, Evan
    Rakelly, Kate
    Hoffman, Judy
    Darrell, Trevor
    COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 852 - 868
  • [8] Deep Video Dehazing With Semantic Segmentation
    Ren, Wenqi
    Zhang, Jingang
    Xu, Xiangyu
    Ma, Lin
    Cao, Xiaochun
    Meng, Gaofeng
    Liu, Wei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (04) : 1895 - 1908
  • [9] A pothole video dataset for semantic segmentation
    Ihsan, Muhammad
    Amrizal, Muhammad Alfian
    Harjoko, Agus
    DATA IN BRIEF, 2024, 53
  • [10] Semantic segmentation and description for video transcoding
    Cavallaro, A
    Steiger, O
    Ebrahimi, T
    2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL III, PROCEEDINGS, 2003, : 597 - 600