Anomalous resistive switching effect in La0.8Ca0.2MnO3/Nb:SrTiO3 structure

被引:1
|
作者
Wang, Zhiquan [1 ,2 ]
Dong, Chengang [1 ]
Wang, Xin [1 ]
机构
[1] Weinan Normal Univ, Sch Phys & Elect Engn, Weinan 714099, Shaanxi, Peoples R China
[2] Engn Res Ctr Xray Imaging & Detect Univ Shaanxi Pr, Weinan 714099, Shaanxi, Peoples R China
来源
关键词
Anodic oxidation - Cobalt alloys - Crystal orientation - Interfaces (materials) - Niobium compounds - Semiconducting manganese compounds - Strontium compounds - Surface discharges;
D O I
10.1116/6.0004095
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A barrier-type resistive switching (RS) unit, composed of a metal and Nb:SrTiO3 (NSTO), holds significant potential for data storage applications due to its high storage density, low operating voltage, and excellent stability. While extensive research has been conducted on conductive oxides (COs), there has been relatively less focus on the RS properties of heterogeneous structures combing CO electrodes and NSTO. Epitaxial growth of CO on NSTO is expected to yield devices with enhanced stability and repeatability. This study explores the RS characteristics of La0.8Ca0.2MnO3 (LCMO)/NSTO heterostructures through epitaxy of both conventional and anoxic LCMO films on (00 l)-oriented NSTO single crystal substrates. The results reveal that the conventional LCMO/NSTO structure exhibits a conventional counterclockwise bipolar RS (BRS) effect, while the anoxic LCMO/NSTO heterostructure demonstrates a unique clockwise (CW) BRS effect (exhibiting different RS characteristics under different applied voltages). The study concludes that the CW-BRS effect mechanism is attributed to a high concentration of oxygen vacancies (V-o) in LCMO. Under different external electric fields, V-o in LCMO and NSTO migrate to the LCMO/NSTO interface, respectively, leading to multiple changes in the interface barrier. These findings offer valuable experimental insights for utilizing CO in the field of RS applications.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Interface capacitance of La0.8Ca0.2MnO3/Nb:SrTiO3 junctions
    Chen, Y. F.
    Ziese, M.
    Esquinazi, P.
    JOURNAL OF APPLIED PHYSICS, 2007, 101 (12)
  • [2] Thickness effect on structure and magnetic properties of La0.8Ca0.2MnO3/SrTiO3 films
    Zhang, Hong-Di
    An, Yu-Kai
    Mai, Zhen-Hong
    Gao, Ju
    Hu, Feng-Xia
    Wang, Yong
    Jia, Quan-Jie
    ACTA PHYSICA SINICA, 2007, 56 (09) : 5347 - 5352
  • [3] Resistive switching behavior of BaTiO3/La0.8Ca0.2MnO3 heterostructures
    Wang, S. Y.
    Li, Meng
    Liu, W. F.
    Gao, J.
    PHYSICS LETTERS A, 2015, 379 (18-19) : 1288 - 1292
  • [4] Magnetothermal conductivity of La0.8Ca0.2MnO3
    Chen, BX
    Rojo, AG
    Uher, C
    Ju, HL
    Greene, RL
    PHYSICAL REVIEW B, 1997, 55 (23): : 15471 - 15474
  • [5] Resistive switching of Pt/Nb: SrTiO3 and La0.7Sr0.3MnO3/Nb:SrTiO3 structures
    Dong, Chengang
    Han, Xiaowei
    Wang, Zhiquan
    Liu, Dongqing
    FUNCTIONAL MATERIALS LETTERS, 2025, 18 (01)
  • [6] Magnetic and transport properties of La0.8Sr0.2MnO3/La0.8Ca0.2MnO3 bilayer
    Prokhorov, VG
    Kaminsky, GG
    Komashko, VA
    Lee, YP
    Park, JS
    LOW TEMPERATURE PHYSICS, 2003, 29 (08) : 663 - 665
  • [7] Glassy Behavior of La0.8Ca0.2MnO3 Nanoparticles
    Markovich, V.
    Jung, G.
    Wisniewski, A.
    Puzniak, R.
    Fita, I.
    Yuzhelevski, Y.
    Mogilyansky, D.
    Titelman, L.
    Gorodetsky, G.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2011, 24 (1-2) : 861 - 865
  • [8] Glassy Behavior of La0.8Ca0.2MnO3 Nanoparticles
    V. Markovich
    G. Jung
    A. Wisniewski
    R. Puzniak
    I. Fita
    Y. Yuzhelevski
    D. Mogilyansky
    L. Titelman
    G. Gorodetsky
    Journal of Superconductivity and Novel Magnetism, 2011, 24 : 861 - 865
  • [9] Effect of ferroelectric polarization switching on the electronic transport properties of La0.8Ca0.2MnO3 film
    Xie, Qiyun
    Zhai, Zhangyin
    Wu, Xiaoshan
    Gao, Ju
    SOLID STATE COMMUNICATIONS, 2014, 195 : 80 - 83
  • [10] Temperature evolution of the cluster state in La0.8Ca0.2MnO3 and La0.8Ca0.2CoO3
    V. A. Ryzhov
    A. V. Lazuta
    V. P. Khavronin
    P. L. Molkanov
    Ya. M. Mukovskii
    A. E. Pestun
    Physics of the Solid State, 2014, 56 : 68 - 76