Sea Surface Temperature Retrievals Using K- and Ka-Bands With Weak Brightness Temperature Response Residual Neural Networks

被引:0
|
作者
Mao, Peng [1 ]
Yin, Xiaobin [1 ,2 ]
Zhang, Youguang [3 ]
Ma, Xiaofeng [3 ]
Wang, Ning [1 ]
Li, Yan [1 ]
Xu, Qing [1 ]
Jiang, Xingwei [3 ,4 ]
机构
[1] Ocean Univ China, Sanya Oceanog Inst, Fac Informat Sci & Engn, Sanya 572024, Peoples R China
[2] Qingdao Marine Sci & Technol Ctr, Lab Reg Oceanog & Numer Modeling, Qingdao 266237, Peoples R China
[3] Natl Satellite Ocean Applicat Serv, Beijing 100081, Peoples R China
[4] Sanya Oceanog Lab, Sanya 572024, Peoples R China
关键词
Climate change; Remote sensing; Radiometers; Microwave communication; Sea surface temperature; Deep learning; Deep learning (DL); microwave radiometer (MWR); remote sensing; sea surface temperature (SST); Special Sensor Microwave Imager/Sounder (SSMIS); MICROWAVE RADIOMETER; OCEAN SURFACE; AMSR-E; CLIMATE; ACCURACY; SSM/I; WIND; EMISSIVITY; VALIDATION; ALGORITHM;
D O I
10.1109/TGRS.2024.3460875
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Sea surface temperature (SST) measurements are crucial in the context of climate change. Microwave SST measurements are currently provided by radiometers operating in the C- and X-bands. In-orbit K- and Ka-band payloads lack the commonly used C- and X-bands for SST retrieval. We present the K-KaSSTNet, a residual neural network (NN) that, for the first time, uses the K and Ka microwave bands with much weaker SST response than C- and X-bands for SST retrieval. Despite training on a limited dataset from 2020 to 2021, K-KaSSTNet consistently achieves reasonable accuracy SST retrievals for data spanning 2017-2022. Moreover, by using deep learning (DL) interpretability methods, we have unveiled the underlying mechanisms driving K-KaSSTNet. When extended to the Special Sensor Microwave Imager/Sounder (SSMIS) and Calibration Microwave Radiometers (CMRs)-payloads typically not used for SST retrieval-the K-KaSSTNet model maintains SST retrievals with reasonable accuracy compared with Advanced Microwave Scanning Radiometer-2 (AMSR-2). This extension broadens the spatiotemporal coverage of microwave SST products and enhances the temporal sampling frequency and continuity of microwave SST measurements.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Triband Frequency-Selective Surface as Subreflector in Ku-, K-, and Ka-Bands
    Song, Xueyan
    Yan, Zehong
    Zhang, Tianling
    Yang, Chuang
    Lian, Ruina
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2016, 15 : 1869 - 1872
  • [2] High-power photonic microwave generation at K- and Ka-bands using a uni-traveling-carrier photodiode
    Ito, H
    Fushimi, H
    Muramoto, Y
    Furuta, T
    Ishibashi, T
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2002, 20 (08) : 1500 - 1505
  • [3] The Atmospheric Response to Weak Sea Surface Temperature Fronts*
    Schneider, Niklas
    Qiu, Bo
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2015, 72 (09) : 3356 - 3377
  • [4] SEA SURFACE SALINITY RETRIEVALS FROM AQUARIUS USING NEURAL NETWORKS
    Soldo, Yan
    Le Vine, David M.
    Dinnat, Emmanuel
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 8143 - 8146
  • [5] Prediction of daily sea surface temperature using artificial neural networks
    Aparna, S. G.
    D'Souza, Selrina
    Arjun, N. B.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (12) : 4214 - 4231
  • [6] Prediction of daily sea surface temperature using efficient neural networks
    Kalpesh Patil
    Makaranad Chintamani Deo
    Ocean Dynamics, 2017, 67 : 357 - 368
  • [7] Prediction of daily sea surface temperature using efficient neural networks
    Patil, Kalpesh
    Deo, Makaranad Chintamani
    OCEAN DYNAMICS, 2017, 67 (3-4) : 357 - 368
  • [8] Improvement of MiRS Sea Surface Temperature Retrievals Using a Machine Learning Approach
    Liu, Shuyan
    Grassotti, Christopher
    Liu, Quanhua
    Zhou, Yan
    Lee, Yong-Keun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 1857 - 1868
  • [9] Sea surface temperature retrievals optimized to the East Sea (Sea of Japan) using NOAA AVHRR data
    Park, KA
    Chung, JY
    Kim, K
    Choi, BH
    Lee, DK
    MARINE TECHNOLOGY SOCIETY JOURNAL, 1999, 33 (01) : 23 - 35
  • [10] Sea surface temperature retrievals optimized to the east sea (Sea of Japan) using NOAA/AVHRR Data
    Res. Institute for Basic Sciences, Seoul National University, Seoul, Korea, Republic of
    不详
    不详
    不详
    Mar. Technol. Soc. J., 1 (23-35):