Exploration of time-fractional cancer tumor models with variable cell killing rates via hybrid algorithm

被引:0
|
作者
Qayyum, Mubashir [1 ]
Ahmad, Efaza [1 ]
机构
[1] Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Lahore, Pakistan
关键词
Cell culture - Choquet integral - Fuzzy rules - Lung cancer - Number theory;
D O I
10.1088/1402-4896/ad7f98
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 36 条
  • [1] New solutions of time-fractional cancer tumor models using modified He-Laplace algorithm
    Qayyum, Mubashir
    Ahmad, Efaza
    Ali, Mohamed R.
    [J]. HELIYON, 2024, 10 (14)
  • [2] Toward computational algorithm for time-fractional Fokker-Planck models
    Freihet, Asad
    Hasan, Shatha
    Alaroud, Mohammad
    Al-Smadi, Mohammed
    Ahmad, Rokiah Rozita
    Din, Ummul Khair Salma
    [J]. ADVANCES IN MECHANICAL ENGINEERING, 2019, 11 (10)
  • [3] A fast algorithm for time-fractional diffusion equation with space-time-dependent variable order
    Jia, Jinhong
    Wang, Hong
    Zheng, Xiangcheng
    [J]. NUMERICAL ALGORITHMS, 2023, 94 (04) : 1705 - 1730
  • [4] A fast algorithm for time-fractional diffusion equation with space-time-dependent variable order
    Jinhong Jia
    Hong Wang
    Xiangcheng Zheng
    [J]. Numerical Algorithms, 2023, 94 : 1705 - 1730
  • [5] An efficient algorithm for solving the variable-order time-fractional generalized Burgers' equation
    Rawani, Mukesh Kumar
    Verma, Amit Kumar
    Cattani, Carlo
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024,
  • [6] Analyzing the impact of time-fractional models on chemotherapy's effect on cancer cells
    Arshad, Muhammad Sarmad
    Afzal, Zeeshan
    Aslam, Muhammad Naeem
    Yasin, Faisal
    Macias-Diaz, Jorge Eduardo
    Zarnab, Areeba
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2024, 98 : 1 - 9
  • [7] A reliable algorithm for time-fractional Navier-Stokes equations via Laplace transform
    Prakash, Amit
    Prakasha, Doddabhadrappla Gowda
    Veeresha, Pundikala
    [J]. NONLINEAR ENGINEERING - MODELING AND APPLICATION, 2019, 8 (01): : 695 - 701
  • [8] Approximate analytical solution of time-fractional vibration equation via reliable numerical algorithm
    Al-Sawalha, M. Mossa
    Alshehry, Azzh Saad
    Nonlaopon, Kamsing
    Shah, Rasool
    Ababneh, Osama Y.
    [J]. AIMS MATHEMATICS, 2022, 7 (11): : 19739 - 19757
  • [9] Residual power series algorithm for fractional cancer tumor models
    Korpinar, Zeliha
    Inc, Mustafa
    Hincal, Evren
    Baleanu, Dumitru
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (03) : 1405 - 1412
  • [10] Separation variable method combined with integral bifurcation method for solving time-fractional reaction–diffusion models
    Weiguo Rui
    Hui Zhang
    [J]. Computational and Applied Mathematics, 2020, 39