Spatial Extrapolation of Early Room Impulse Responses with Noise-Robust Physics-Informed Neural Network

被引:0
|
作者
Tsunokuni, Izumi [1 ]
Sato, Gen [1 ]
Ikeda, Yusuke [1 ]
Oikawa, Yasuhiro [2 ]
机构
[1] Tokyo Denki Univ, Tokyo 1208551, Japan
[2] Waseda Univ, Tokyo 1698555, Japan
关键词
deep neural network; wave equation; SIREN; PI-SIREN;
D O I
10.1587/transfun.2024EAL2015
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper reports a spatial extrapolation of the sound field with a physics-informed neural network. We investigate the spatial extrapolation of the room impulse responses with physics-informed SIREN architecture. Furthermore, we proposed a noise-robust extrapolation method by introducing a tolerance term to the loss function.
引用
收藏
页码:1556 / 1560
页数:5
相关论文
共 50 条
  • [1] Physics-Informed Time-Frequency Fusion Network With Attention for Noise-Robust Bearing Fault Diagnosis
    Kim, Yejin
    Kim, Young-Keun
    IEEE ACCESS, 2024, 12 : 12517 - 12532
  • [2] Validation and extrapolation of atomic masses with a physics-informed fully connected neural network
    Huang, Yiming
    Chen, Jinhui
    Jia, Jiangyong
    Liu, Lu-Meng
    Ma, Yu-Gang
    Zhang, Chunjian
    PHYSICAL REVIEW C, 2025, 111 (03)
  • [3] Physics-informed Neural Network for Force-free Magnetic Field Extrapolation
    Zhang, Yao
    Xu, Long
    Yan, Yihua
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2024, 24 (10)
  • [4] Physics-informed Neural Network for Force-free Magnetic Field Extrapolation
    Yao Zhang
    Long Xu
    Yihua Yan
    Research in Astronomy and Astrophysics, 2024, 24 (10) : 161 - 171
  • [5] A robust physics-informed neural network approach for predicting structural instability
    Mai, Hau T.
    Truong, Tam T.
    Kang, Joowon
    Mai, Dai D.
    Lee, Jaehong
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2023, 216
  • [6] Robust Variational Physics-Informed Neural Networks
    Rojas, Sergio
    Maczuga, Pawel
    Munoz-Matute, Judit
    Pardo, David
    Paszynski, Maciej
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 425
  • [7] Robust Variational Physics-Informed Neural Networks
    Rojas, Sergio
    Maczuga, Pawel
    Muñoz-Matute, Judit
    Pardo, David
    Paszyński, Maciej
    Computer Methods in Applied Mechanics and Engineering, 2024, 425
  • [8] Room impulse response reconstruction with physics-informed deep learning
    Karakonstantis, Xenofon
    Caviedes-Nozal, Diego
    Richard, Antoine
    Fernandez-Grande, Efren
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 155 (02): : 1048 - 1059
  • [9] Extrapolation of cavitation and hydrodynamic pressure in lubricated contacts: a physics-informed neural network approach
    Brumand-Poor, Faras
    Azanledji, Freddy Kokou
    Plueckhahn, Nils
    Barlog, Florian
    Boden, Lukas
    Schmitz, Katharina
    ADVANCED MODELING AND SIMULATION IN ENGINEERING SCIENCES, 2025, 12 (01)
  • [10] Physics informed neural network (PINN) for noise-robust phase-based magnetic resonance electrical properties tomography
    Inda, Adan J. Garcia
    Huang, Shao Y.
    Immamoglu, Nevrez
    Yu, Wenwei
    2022 3RD URSI ATLANTIC AND ASIA PACIFIC RADIO SCIENCE MEETING (AT-AP-RASC), 2022,