A novel multitask transformer deep learning architecture for joint classification and segmentation of horticulture plantations using very High-Resolution satellite imagery

被引:0
|
作者
Vinod, P.V. [1 ,2 ]
Behera, M.D. [2 ]
Jaya Prakash, A. [2 ]
Hebbar, R. [1 ]
Srivastav, S.K. [3 ]
机构
[1] Regional Remote Sensing Centre (RRSC-NRSC), Bangalore, India
[2] Centre for Ocean, River, Atmosphere and Land Sciences, Indian Institute of Technology Kharagpur, West Bengal, India
[3] Regional Centres, NRSC, ISRO, New Delhi, India
关键词
D O I
10.1016/j.compag.2024.109540
中图分类号
学科分类号
摘要
引用
下载
收藏
相关论文
共 50 条
  • [1] Agave crop segmentation and maturity classification with deep learning data-centric strategies using very high-resolution satellite imagery
    Sánchez A.
    Nanclares R.
    Pelagio U.
    Quevedo A.
    Calvario G.
    Aguilar A.
    Moya Sánchez E.U.
    International Journal of Remote Sensing, 2023, 44 (22) : 7017 - 7032
  • [2] End-to-end Cloud Segmentation in High-Resolution Multispectral Satellite Imagery Using Deep Learning
    Morales, Giorgio
    Ramirez, Alejandro
    Telles, Joel
    PROCEEDINGS OF THE 2019 IEEE XXVI INTERNATIONAL CONFERENCE ON ELECTRONICS, ELECTRICAL ENGINEERING AND COMPUTING (INTERCON), 2019,
  • [3] Semantic segmentation of high-resolution satellite images using deep learning
    Kuldeep Chaurasia
    Rijul Nandy
    Omkar Pawar
    Ravi Ranjan Singh
    Meghana Ahire
    Earth Science Informatics, 2021, 14 : 2161 - 2170
  • [4] Semantic segmentation of high-resolution satellite images using deep learning
    Chaurasia, Kuldeep
    Nandy, Rijul
    Pawar, Omkar
    Singh, Ravi Ranjan
    Ahire, Meghana
    EARTH SCIENCE INFORMATICS, 2021, 14 (04) : 2161 - 2170
  • [5] Land Cover Classification at the Wildland Urban Interface using High-Resolution Satellite Imagery and Deep Learning
    Nguyen, Mai H.
    Block, Jessica
    Crawl, Daniel
    Siu, Vincent
    Bhatnagar, Akshit
    Rodriguez, Federico
    Kwan, Alison
    Baru, Namrita
    Altintas, Ilkay
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 1632 - 1638
  • [6] COMPRESSIVE SENSING BASED RECONSTRUCTION AND PIXEL-LEVEL CLASSIFICATION OF VERY HIGH-RESOLUTION DISASTER SATELLITE IMAGERY USING DEEP LEARNING
    Shinde, Rajat C.
    Potnis, Abhishek, V
    Durbha, Surya S.
    Andugula, Prakash
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2639 - 2642
  • [7] Cloud Detection in High-Resolution Multispectral Satellite Imagery Using Deep Learning
    Morales, Giorgio
    Huaman, Samuel G.
    Telles, Joel
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT III, 2018, 11141 : 280 - 288
  • [8] Extending deep learning approaches for forest disturbance segmentation on very high-resolution satellite images
    Kislov, Dmitry E.
    Korznikov, Kirill A.
    Altman, Jan
    Vozmishcheva, Anna S.
    Krestov, Pavel V.
    REMOTE SENSING IN ECOLOGY AND CONSERVATION, 2021, 7 (03) : 355 - 368
  • [9] Building footprint extraction and counting on very high-resolution satellite imagery using object detection deep learning framework
    Nurkarim, Wahidya
    Wijayanto, Arie Wahyu
    EARTH SCIENCE INFORMATICS, 2023, 16 (01) : 515 - 532
  • [10] Building footprint extraction and counting on very high-resolution satellite imagery using object detection deep learning framework
    Wahidya Nurkarim
    Arie Wahyu Wijayanto
    Earth Science Informatics, 2023, 16 : 515 - 532