Self-consistent quasiparticle GW and hybrid functional calculations for Al/InAs/Al heterojunctions: Band offset and spin-orbit coupling effects

被引:1
|
作者
Ness, H. [1 ]
Corsetti, F.
Pashov, D. [1 ]
Verstichel, B. [2 ]
Winkler, G. W. [3 ]
van Schilfgaarde, M. [1 ,4 ]
Lutchyn, R. M. [3 ]
机构
[1] Kings Coll London, Fac Nat & Math Sci, Dept Phys, London WC2R 2LS, England
[2] Synopsys Denmark, DK-2100 Copenhagen, Denmark
[3] Microsoft Azure Quantum, Goleta, CA 93111 USA
[4] Natl Renewable Energy Lab, Golden, CO 80401 USA
关键词
Aluminum arsenide - Heterojunctions - Indium arsenide - Nanocrystals - Photoacoustic spectroscopy - Quantum electronics - Quantum optics - Spin dynamics - Ultraviolet photoelectron spectroscopy;
D O I
10.1103/PhysRevB.110.195301
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The electronic structure of surfaces and interfaces plays a key role in the properties of quantum devices. Here, we study the electronic structure of realistic Al/InAs/Al heterojunctions using a combination of density functional theory with hybrid functionals and state-of-the-art quasiparticle GW (QSGW) calculations. We find a good agreement between QSGW calculations and hybrid functional calculations, which themselves compare favorably well with angle-resolved photoemission spectroscopy experiments. Our paper confirms the need for well-controlled quality of the interfaces to obtain the needed properties of InAs/Al heterojunctions. A detailed analysis of the effects of spin-orbit coupling on the spin splitting of the electronic states shows a linear scaling in k space, related to the two-dimensional nature of some interface states. The good agreement by QSGW and hybrid functional calculations opens the door towards trustable use of an effective approximation to QSGW for studying very large heterojunctions.
引用
收藏
页数:11
相关论文
共 46 条
  • [1] GW quasiparticle calculations with spin-orbit coupling for the light actinides
    Ahmed, Towfiq
    Albers, R. C.
    Balatsky, A. V.
    Friedrich, C.
    Zhu, Jian-Xin
    PHYSICAL REVIEW B, 2014, 89 (03)
  • [2] Self-consistent relativistic density functional calculations including scalar and spin-orbit effects.
    Peralta, JE
    Scuseria, GE
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 228 : U505 - U505
  • [3] Quasiparticle self-consistent GW calculation of the work functions of Al(111), Al(100), and Al(110)
    Faleev, Sergey V.
    Mryasov, Oleg N.
    Mattsson, Thomas R.
    PHYSICAL REVIEW B, 2010, 81 (20):
  • [4] Quasiparticle self-consistent GW calculations for PbS, PbSe, and PbTe: Band structure and pressure coefficients
    Svane, A.
    Christensen, N. E.
    Cardona, M.
    Chantis, A. N.
    van Schilfgaarde, M.
    Kotani, T.
    PHYSICAL REVIEW B, 2010, 81 (24)
  • [5] Quasiparticle self-consistent GW energy band calculations for Ge3N4 phases
    Jayatunga, Benthara Hewage Dinushi
    Lambrecht, Walter R. L.
    PHYSICAL REVIEW B, 2020, 102 (19)
  • [6] Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects
    Gao, Weiwei
    Gao, Xiang
    Abtew, Tesfaye A.
    Sun, Yi-Yang
    Zhang, Shengbai
    Zhang, Peihong
    PHYSICAL REVIEW B, 2016, 93 (08)
  • [7] Spin-orbit and tensor mean-field effects on spin-orbit splitting including self-consistent core polarizations
    Zalewski, M.
    Dobaczewski, J.
    Satula, W.
    Werner, T. R.
    PHYSICAL REVIEW C, 2008, 77 (02):
  • [8] Spin-wave dispersion of 3d ferromagnets based on quasiparticle self-consistent GW calculations
    Okumura, H.
    Sato, K.
    Kotani, T.
    PHYSICAL REVIEW B, 2019, 100 (05)
  • [9] Performance of dynamically weighted multiconfiguration self-consistent field and spin-orbit coupling calculations of diatomic molecules of Group 14 elements
    Zeng, Tao
    Fedorov, Dmitri G.
    Klobukowski, Mariusz
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (02):
  • [10] Quasiparticle self-consistent GW calculations of the electronic band structure of bulk and monolayer V2O5
    Bhandari, Churna
    Lambrecht, Walter R. L.
    van Schilfgaarde, Mark
    PHYSICAL REVIEW B, 2015, 91 (12):