Closing the Computational-Query Depth Gap in Parallel Stochastic Convex Optimization

被引:0
|
作者
University of Michigan, United States [1 ]
不详 [2 ]
不详 [3 ]
机构
来源
Proc. Mach. Learn. Res. | / 2608-2643期
基金
美国国家科学基金会;
关键词
Consensus algorithm - Constrained optimization - Convex optimization - Matrix algebra - Optimization algorithms - Parallel algorithms - Polynomials - Structured Query Language;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 9 条
  • [1] Optimal Query Complexity of Secure Stochastic Convex Optimization
    Tang, Wei
    Ho, Chien-Ju
    Liu, Yang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [2] ReSQueing Parallel and Private Stochastic Convex Optimization
    Carmon, Yair
    Jambulapati, Arun
    Jin, Yujia
    Lee, Yin Tat
    Liu, Daogao
    Sidford, Aaron
    Tian, Kevin
    2023 IEEE 64TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, FOCS, 2023, : 2031 - 2058
  • [3] Statistical Query Algorithms for Mean Vector Estimation and Stochastic Convex Optimization
    Feldman, Vitaly
    Guzman, Cristobal
    Vempala, Santosh
    MATHEMATICS OF OPERATIONS RESEARCH, 2021, 46 (03) : 912 - 945
  • [4] Statistical Query Algorithms for Mean Vector Estimation and Stochastic Convex Optimization
    Feldman, Vitaly
    Guzman, Cristobal
    Vempala, Santosh
    PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 1265 - 1277
  • [5] Distributed Computational Framework for Large-Scale Stochastic Convex Optimization
    Rostampour, Vahab
    Keviczky, Tamas
    ENERGIES, 2021, 14 (01)
  • [6] Parallel Algorithms and Probability of Large Deviation for Stochastic Convex Optimization Problems
    Dvurechensky, P. E.
    Gasnikov, A. V.
    Lagunovskaya, A. A.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2018, 11 (01) : 33 - 37
  • [7] Stochastic portfolio optimization with proportional transaction costs: Convex reformulations and computational experiments
    Filomena, Tiago P.
    Lejeune, Miguel A.
    OPERATIONS RESEARCH LETTERS, 2012, 40 (03) : 212 - 217
  • [8] Penetration Depth Between Two Convex Polyhedra: An Efficient Stochastic Global Optimization Approach
    Abramson, Mark A.
    Kent, Griffin D.
    Smith, Gavin W.
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (12) : 4267 - 4273
  • [9] On the Computation and Communication Complexity of Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex Optimization
    Yu, Hao
    Jin, Rong
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97