Research Progress of Long-Wavelength Afterglow Luminescent Materials Doped with Transition Metal Ions

被引:0
|
作者
Wang Y. [1 ]
Hongyu L. [1 ]
Wang C. [1 ]
Tian S. [1 ]
Cai Y. [1 ]
Liu Z. [1 ]
Yu X. [1 ]
You X. [1 ]
Qiu J. [1 ]
Xu X. [1 ]
机构
[1] Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming
关键词
Capture center; Long afterglow luminescence; Long wave emission; Rare earths; Transition metal ion;
D O I
10.11785/S1000-4343.20210501
中图分类号
学科分类号
摘要
Different from rare earth ion-doped long-wavelength afterglow luminescent materials, transition metal ion doped long-wave (600~1300 nm) afterglow luminescent materials are used in biological imaging and drug delivery fields because of their stable and efficient broadband luminescence, and are widely studied especially in the field of biological imaging. In recent years, the basic research and application exploration in this field have made great progress, but the afterglow performance is far from meeting current requirements. This article mainly uses the luminescence center ion as a clue to summarize the transition metal ion doped long-wavelength afterglow luminescent materials reported in recent years, discusses the optimization of the afterglow performance, and introduces the application of transition metal ion doped long-wavelength afterglow luminescence nano probe in the field ofbio-medicine. Finally, look forward to the development prospects of current research. © 2021, Editorial Office of Journal of the Chinese Society of Rare Earths. All right reserved.
引用
收藏
页码:663 / 681
页数:18
相关论文
共 62 条
  • [1] Li Y, Gecevicius M, Qiu J R., Long persistent phosphors--from fundamentals to applications, Chem. Soc. Rev, 45, 8, (2016)
  • [2] Van den Eeckhout K, Poelman D, Smet P F., Persistent luminescence in non-Eu<sup>(2+)</sup>-doped compounds: A review, Materials (Basel), 6, 7, (2013)
  • [3] Sun J B, Wang H R, An Y Q, Cui C X, Han D., Research progress of long afterglow luminescent materials, Rare Met. Mat. Eng, 2, (2008)
  • [4] Qiu K L, Li P L, Meng X Y, Liu J J, Bao Q, Li Y B, Li X, Wang Z P, Yang Z P, Wang Z J., Trap distribution and mechanism for near infrared long-afterglow material AlMgGaO<sub>4</sub>:Cr<sup>3+</sup>, Dalton Trans, 48, 2, (2019)
  • [5] Kojima Y, Aoyagi K, Yasue T., Afterglow mechanism and thermoluminescence of red-emitting CaS:Eu<sup>2+</sup>, Pr<sup>3+</sup> phosphor with incorporated Li<sup>+</sup> ion upon visible light irradiation, J. Lumin, 126, 2, (2007)
  • [6] Jin Y H, Hu Y H, Chen L, Wang X J, Ju G F., Luminescent properties of a red afterglow phosphor Ca<sub>2</sub>SnO<sub>4</sub>: Pr<sup>3+</sup>, Opt. Mater, 35, 7, (2013)
  • [7] Dai W B, Lei Y F, Zhou J, Xu M, Chu L L, Li L, Zhao P, Zhang Z H., Near-infrared quantum-cutting and long-persistent phosphor Ca<sub>3</sub>Ga<sub>2</sub>Ge<sub>3</sub>O<sub>12</sub>:Pr<sup>3+</sup>, Yb<sup>3+</sup> for application in in vivo bioimaging and dye-sensitized solar cells, J. Alloys Compd, 726, (2017)
  • [8] Lu Y, Wang L, Zhuang Y X, Zhou T L, Xie R J., Discovery of the Yb<sup>2+</sup>-Yb<sup>3+</sup> couple as red-to-NIR persistent luminescence emitters in Yb-activated (Ba<sub>1-</sub><sub>x</sub>Sr<sub>x</sub>)AlSi<sub>5</sub>O<sub>2</sub>N<sub>7</sub> phosphors, J. Mater. Chem. C, 5, 28, (2017)
  • [9] Hong G S, Antaris A L, Dai H J., Near-infrared fluorophores for biomedical imaging, Nat. Biomed. Eng, 1, 1, (2017)
  • [10] Huang W C, Gong X Y, Cui R R, Li X C, Li L R, Wang X, Deng C Y., Enhanced persistent luminescence of LiGa<sub>5</sub>O<sub>8</sub>:Cr<sup>3+</sup> near-infrared phosphors by codoping Sn<sup>4+</sup>, J. Mater. Sci.-Mater. Electron, 29, 12, (2018)