Waste classification strategy based on multi-scale feature fusion for intelligent waste recycling in office buildings

被引:0
|
作者
Lin, Zongjing [1 ]
Xu, Huxiu [2 ]
Zhou, Maoying [1 ]
Wang, Ban [3 ]
Qin, Huawei [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Mech Engn, Hangzhou 310018, Peoples R China
[2] Zhejiang Univ, State Key Lab Fluid Power Mech Syst, Hangzhou 310027, Peoples R China
[3] Hangzhou City Univ, Dept Mech Engn, Hangzhou 310015, Peoples R China
关键词
Waste classification; Multi-scale feature fusion; Deep learning; Local features; Global features; BEHAVIOR;
D O I
10.1016/j.wasman.2024.10.008
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Waste classification is an important measure to protect the environment. Existing waste classification methods mainly focus on scientific research, but lack attention to the challenges of waste classification in actual scenarios. For example, wastes with similar contours, similar textures, or contaminated appearance are difficult to be classified in actual scenarios. To address these issues, this paper proposes an innovative multi-scale feature fusion strategy (MFFS) to improve the classification accuracy of these wastes. MFFS combines local fine-grained features with global coarse-grained features to improve the feature expression ability of waste. However, how to effectively fuse these two features is a key challenge. This paper proposes a dual-scale feature fusion strategy, first fusing fine-grained features in the first dimension, then fusing coarse-grained features in the second dimension, and introducing spatial features to further enhance feature expression capabilities. In order to reduce the interference of background information, the model in this paper models global relationships based on convolutional features. The MFFS strategy achieved a classification accuracy of 95.5% on the self-built dataset and 94.1% on the public dataset TrashNet. The number of parameters of our model is reduced by 57.2% compared with the classic VGG16 and by 34.2% compared with the Vision Transformer. In addition, we designed an intelligent waste sorting device and deployed the MFFS model on the device to implement the application. Experiments show that our model has ideal accuracy and stability and can be promoted and applied.
引用
收藏
页码:443 / 454
页数:12
相关论文
共 50 条
  • [1] Research on Waste Plastics Classification Method Based on Multi-Scale Feature Fusion
    Cai, Zhenxing
    Yang, Jianhong
    Fang, Huaiying
    Ji, Tianchen
    Hu, Yangyang
    Wang, Xin
    SENSORS, 2022, 22 (20)
  • [2] Classification of Star Spectrum Based on Multi-Scale Feature Fusion
    Han Bo-chong
    Song Yi-han
    Zhao Yong-heng
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44 (08) : 2284 - 2288
  • [3] A Vehicle Classification Model Based on Multi-scale Feature Fusion
    Wang, Xuanhong
    Yang, Shiyu
    Sun, Zengguo
    Li, Xiaojun
    Xiao, Yun
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7180 - 7185
  • [4] Classification of crop pests based on multi-scale feature fusion
    Wei, Depeng
    Chen, Jiqing
    Luo, Tian
    Long, Teng
    Wang, Huabin
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 194
  • [5] Typhoon Classification Model Based on Multi-Scale Convolution Feature Fusion
    Lu Peng
    Zou Peiqi
    Zou Guoliang
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (16)
  • [6] Multi-scale Remote Sensing Image Classification Based on Weighted Feature Fusion
    Cheng Yinzhu
    Liu Song
    Wang Nan
    Shi Yuetian
    Zhang Geng
    ACTA PHOTONICA SINICA, 2023, 52 (11)
  • [7] Improved Remote Sensing Image Classification Based on Multi-Scale Feature Fusion
    Zhang, Chengming
    Chen, Yan
    Yang, Xiaoxia
    Gao, Shuai
    Li, Feng
    Kong, Ailing
    Zu, Dawei
    Sun, Li
    REMOTE SENSING, 2020, 12 (02)
  • [8] Hyperspectral image classification based on octave convolution and multi-scale feature fusion
    Li, Zhiyong
    Wen, Bo
    Luo, Yunzhong
    Li, Qiaochu
    Song, Lulu
    PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2022, 75 : 80 - 94
  • [9] Fine-Grained Image Classification Based on Multi-Scale Feature Fusion
    Li Siyao
    Liu Yuhong
    Zhang Rongfen
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (12)
  • [10] Research on the Classification of Complex Wheat Fields Based on Multi-Scale Feature Fusion
    Mu, Fei
    Chu, Hongli
    Shi, Shuaiqi
    Yuan, Minxin
    Liu, Qi
    Yang, Fuzeng
    AGRONOMY-BASEL, 2022, 12 (11):