Modified energy storage properties of lead-free Sr0.3Bi0.35Na0.335Li0.015TiO3 ceramics with La3+ substitution via the solid-state combustion technique

被引:0
|
作者
Sinkruason, Thanapon [1 ]
Luangpangai, Anupong [1 ]
Julphunthong, Phongthorn [2 ,3 ]
Rittidech, Aurawan [4 ]
Suthapintu, Aekasit [5 ]
Vittayakorn, Naratip [6 ]
Bongkarn, Theerachai [1 ,3 ]
机构
[1] Naresuan Univ, Fac Sci, Dept Phys, Phitsanulok 65000, Thailand
[2] Naresuan Univ, Fac Engn, Dept Civil Engn, Phitsanulok 65000, Thailand
[3] Naresuan Univ, Fac Sci, Res Ctr Acad Excellence Appl Phys, Phitsanulok 65000, Thailand
[4] Mahasarakham Univ, Fac Sci, Dept Phys, Maha Sarakham 44150, Thailand
[5] Rajabhat Mahasarakham Univ, Fac Sci & Technol, Maha Sarakham, Thailand
[6] King Mongkuts Inst Technol Ladkrabang, Fac Sci, Adv Mat Res Unit, Bangkok 10520, Thailand
关键词
BNLT-xLa; Phase structure; Microstructure; Ferroelectric; Energy storage; FIELD-INDUCED STRAIN; LOW ELECTRIC-FIELD; BNT-BT;
D O I
10.1016/j.ceramint.2024.03.083
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, the influence of La3+ substitution on the phase structure, microstructure, electrical and energy storage properties of (Sr 0.3 Bi 0.35 Na 0.335 Li 0.015 ) 1-x La x TiO 3 (SBNLT-xLa) ceramics with x = 0-0.05, using the solidstate combustion technique, was investigated. X-ray diffraction (XRD) patterns indicated a pure perovskite structure formed, along with coexisting rhombohedral and tetragonal phases in all ceramics. The Rietveld refinement analysis showed the tetragonal phase increased while the rhombohedral phase decreased with increased La3+ content. The morphology of the SBNLT-xLa ceramics displayed polygonal grain shapes and anisotropic grain growth. Average grain sizes increased from 2.01 to 2.43 mu m as x increased from 0 to 0.01 and afterwards decreased as x increased further. Both the measured density and maximum dielectric constant (epsilon m) decreased from 5.48 to 5.29 g/cm3 and from 4667 to 2313, respectively, when x increased from 0 to 0.05. A decrease in the dielectric properties caused by the phase ratio shifting away from a morphotropic phase boundary (MPB) condition, poor microstructure and low density was produced with La3+ replacement. The maximum polarization (Pmax), remnant polarization (Pr) and coercive field (Ec) decreased with increased La3+ content. A decline in Pr and Ec improved the energy storage efficiency (eta) and energy storage loss (Wloss), resulting in enhanced energy storage properties. At x = 0.02, the ceramic showed good energy storage properties (W total of 0.781 J/cm3, W rec of 0.624 J/cm3, W loss of 0.157 J/cm3 and eta of 79.8%), measured at 60 kV/cm.
引用
收藏
页码:52011 / 52019
页数:9
相关论文
共 50 条
  • [1] Improvement of dielectric and energy storage properties in Sr0.85Bi0.1ZrO3 modified (Bi0.5Na0.5)0.7Sr0.3TiO3 lead-free ceramics
    Zhang, Fanbo
    Dai, Zhonghua
    Liu, Weiguo
    Wei, Yongxing
    Xi, Zengzhe
    Ren, Xiaobing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 908
  • [2] Enhanced energy storage properties in (Bi 0.5 Na 0.5 ) 0.5 Sr 0.5 TiO 3-modified lead-free NaNbO3 3 antiferroelectric ceramics
    Zhu, Miaomiao
    Pan, Qianxi
    Jing, Weiyi
    Jia, Peipei
    Zhang, Xiaoming
    Zhang, Na
    Song, Guilin
    PHYSICA B-CONDENSED MATTER, 2024, 691
  • [3] Bi0.2Sr0.7TiO3–doped Bi0.5Na0.5TiO3–based lead-free ceramics with good energy storage properties
    Cheng Wang
    Peng Shi
    Journal of Materials Science: Materials in Electronics, 2023, 34
  • [4] Bi0.2Sr0.7TiO3-doped Bi0.5Na0.5TiO3-based lead-free ceramics with good energy storage properties
    Wang, Cheng
    Shi, Peng
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (25)
  • [5] Enhanced energy-storage properties of (1-x)(0.7Bi0.5Na0.5TiO3-0.3Bi0.2Sr0.7TiO3)-xNaNbO3 lead-free ceramics
    Li, Qiang
    Yao, Zhaojun
    Ning, Li
    Gao, Shang
    Hu, Bin
    Dong, Guangzhi
    Fan, Huiqing
    CERAMICS INTERNATIONAL, 2018, 44 (03) : 2782 - 2788
  • [6] Superior energy storage performance of Sr0.7Bi0.2TiO3-modified Na0.5Bi0.5TiO3-K0.7La0.1NbO3 lead-free ferroelectric ceramics
    Liu, Xinyu
    Li, Qin
    Wang, Ting
    Gong, Weiping
    Ai, Taotao
    He, Yang
    Chen, Xinyu
    Hao, Minghui
    He, Minghui
    Qi, Meng
    He, Yuxiang
    Vtyurin, Alexander N.
    Song, Chunlin
    Liu, Gang
    Yan, Yan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1005
  • [7] Enhanced energy storage properties of BiAlO3 modified Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 lead-free antiferroelectric ceramics
    Yu, Zhenglei
    Liu, Yunfei
    Shen, Muyi
    Qian, Hao
    Li, Fangfang
    Lyu, Yinong
    CERAMICS INTERNATIONAL, 2017, 43 (10) : 7653 - 7659
  • [8] The Effect of Cu2+ Substitution on the Properties of BNKLT Lead-Free Ceramics Fabricated by the Solid-State Combustion Technique
    Kornphom, Chittakorn
    Bhupaijit, Pamornnarumol
    Mala, Luxsanaree
    Bongkarn, Theerachai
    Charoenthai, Nipaphat
    INTEGRATED FERROELECTRICS, 2021, 214 (01) : 46 - 55
  • [9] Enhanced energy storage properties in Bi0.1Na0.7NbO3-modified Bi0.5(Na, K)0.5TiO3 lead-free ceramics
    Xuxuan Tang
    Kun Liu
    Xingxin Luo
    Ping Peng
    Journal of Materials Science: Materials in Electronics, 2025, 36 (11)
  • [10] Novel NaNbO3-Sr0.7Bi0.2TiO3 lead-free dielectric ceramics with excellent energy storage properties
    Wei, Tian
    Liu, Kai
    Fan, Pengyuan
    Lu, Daju
    Ye, Baohua
    Zhou, Changrong
    Yang, Huabing
    Tan, Hua
    Salamon, David
    Nan, Bo
    Zhang, Haibo
    CERAMICS INTERNATIONAL, 2021, 47 (03) : 3713 - 3719