An adaptive algorithm based on high-dimensional function approximation to obtain optimal designs

被引:0
|
作者
Seufert, Philipp [1 ]
Schwientek, Jan [1 ]
Bortz, Michael [1 ]
机构
[1] Fraunhofer Center for Machine Learning and ITWM, Fraunhofer-Platz 1, Kaiserslautern,67663, Germany
来源
arXiv | 2021年
关键词
721.1 Computer Theory; Includes Computational Logic; Automata Theory; Switching Theory; Programming Theory - 901.3 Engineering Research - 921 Mathematics - 921.6 Numerical Methods - 922.1 Probability Theory - 922.2 Mathematical Statistics - 961 Systems Science;
D O I
暂无
中图分类号
学科分类号
摘要
35
引用
收藏
相关论文
共 50 条
  • [1] A TREE-STRUCTURED ADAPTIVE NETWORK FOR FUNCTION APPROXIMATION IN HIGH-DIMENSIONAL SPACES
    SANGER, TD
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1991, 2 (02): : 285 - 293
  • [3] Adaptive Near-Optimal Rank Tensor Approximation for High-Dimensional Operator Equations
    Bachmayr, Markus
    Dahmen, Wolfgang
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2015, 15 (04) : 839 - 898
  • [4] Adaptive Near-Optimal Rank Tensor Approximation for High-Dimensional Operator Equations
    Markus Bachmayr
    Wolfgang Dahmen
    Foundations of Computational Mathematics, 2015, 15 : 839 - 898
  • [5] Towards a black box algorithm for nonlinear function approximation over high-dimensional domains
    Jamshidi, Arta A.
    Kirby, Michael J.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (03): : 941 - 963
  • [6] Cultural Algorithm based on Adaptive Cauchy Mutated Particle Swarm Optimizer for High-Dimensional Function optimization
    Liu, Sheng
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 4006 - 4011
  • [7] Quasi-interpolation for high-dimensional function approximation
    Gao, Wenwu
    Wang, Jiecheng
    Sun, Zhengjie
    Fasshauer, Gregory E.
    NUMERISCHE MATHEMATIK, 2024, 156 (05) : 1855 - 1885
  • [8] An efficient algorithm for high-dimensional function optimization
    Yuanfang Ren
    Yan Wu
    Soft Computing, 2013, 17 : 995 - 1004
  • [9] An efficient algorithm for high-dimensional function optimization
    Ren, Yuanfang
    Wu, Yan
    SOFT COMPUTING, 2013, 17 (06) : 995 - 1004
  • [10] High-dimensional anomaly detection algorithm based on coupling-adaptive distance
    Zhou J.
    Yu J.
    Song Y.
    Liang S.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2022, 43 (08): : 182 - 192