Characterisation of fibre distribution uniformity in steel fibre-reinforced concrete under microwave-induced heating during casting

被引:0
|
作者
Zhao, Lulu [1 ,2 ]
Li, Hui [1 ,2 ]
Mu, Ru [1 ,2 ]
Zhou, Jian [1 ,2 ]
Wang, Xiaowei [1 ,2 ]
Wu, Kai [3 ]
Xu, Mingfeng [1 ,2 ]
Qing, Longbang [1 ,2 ]
机构
[1] School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin,300401, China
[2] Tianjin Key Laboratory of Prefabricated Building and Intelligent Construction, Hebei University of Technology, Tianjin,300401, China
[3] Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai,201804, China
来源
基金
中国国家自然科学基金;
关键词
Fiber reinforced concrete - Microwave sensors - Steel fibers;
D O I
10.1016/j.jobe.2024.111111
中图分类号
学科分类号
摘要
Traditional active microwave thermography (AMT) tests for hardened steel fibre-reinforced concrete (SFRC). The surface temperature of SFRC derived from AMT cannot fully characterise the distribution of steel fibres in the SFRC. This study proposes a microwave-induced heating method combined with temperature sensors (MI-TS) to estimate the fibre dispersion of an SFRC mixture during casting. The principles and testing process are discussed, and a numerical model is developed to evaluate the temperature distribution of the SFRC mixture following microwave exposure. Through MI-TS and numerical models, the temperature in the SFRC mixture with uniform fibre distribution, fibre clustering and fibre sinking is investigated, and the results are compared with those obtained by AMT and destruction technology to evaluate the feasibility of the proposed method. The results show that in the same specimen, the temperature difference between areas with similar fibre content falls in a very narrow range (e.g., 3.5–4.5 °C for a 100 × 100 × 100 mm specimen exposed to 600 W of microwave irradiation for 180 s). When the fibre content in a given area is more than 0.5 vol%, a large temperature difference forms between this and other areas. When the equivalent fibre content of the specimen is ignored, the temperature difference between the two areas is directly proportional to the difference in fibre content. Therefore, the area that shows differences in fibre clustering and fibre content can be easily determined found based on the temperature difference derived from MI-TS. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [1] Steel fibre-reinforced concrete: review
    Salem, Nehme
    Ayman, Abeidi
    EPITOANYAG-JOURNAL OF SILICATE BASED AND COMPOSITE MATERIALS, 2023, 75 (01): : 21 - 25
  • [2] Characterisation proposal of direct shear strength of steel fibre-reinforced concrete
    Nzambi, Aaron Kadima Lukanu Lwa
    de Oliveira, Denio Ramam Carvalho
    Melo, Vander Luiz da Silva
    Barreira, Ronnan Wembles Martins
    Moraes, Heber Dioney Sousa
    MAGAZINE OF CONCRETE RESEARCH, 2024, 76 (20) : 1150 - 1164
  • [3] Flexural behaviour of steel fibre-reinforced concrete under cyclic loading
    Boulekbache, Bensaid
    Hamrat, Mostefa
    Chemrouk, Mohamed
    Amziane, Sofiane
    CONSTRUCTION AND BUILDING MATERIALS, 2016, 126 : 253 - 262
  • [4] The effect of fibre distribution characteristics on the flexural strength of steel fibre-reinforced ultra high strength concrete
    Kang, Su Tae
    Lee, Bang Yeon
    Kim, Jin-Keun
    Kim, Yun Yong
    CONSTRUCTION AND BUILDING MATERIALS, 2011, 25 (05) : 2450 - 2457
  • [5] On the prediction of the orientation factor and fibre distribution of steel and macro-synthetic fibres for fibre-reinforced concrete
    Alberti, M. G.
    Enfedaque, A.
    Galvez, J. C.
    CEMENT & CONCRETE COMPOSITES, 2017, 77 : 29 - 48
  • [6] Study of the Effect of Fibre Orientation on Artificially Directed Steel Fibre-Reinforced Concrete
    Li, Fang-Yuan
    Li, Liu-Yang
    Dang, Yan
    Wu, Pei-Feng
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2018, 2018
  • [7] A Statistical Model of Fibre Distribution in a Steel Fibre Reinforced Concrete
    Kobaka, Janusz
    MATERIALS, 2021, 14 (23)
  • [8] Assessment of the Shear Strength of Steel Fibre-Reinforced Concrete
    Picazo, Alvaro
    Alberti, Marcos G.
    Enfedaque, Alejandro
    Galvez, Jaime C.
    HIGH TECH CONCRETE: WHERE TECHNOLOGY AND ENGINEERING MEET, 2018, : 405 - 412
  • [9] Characterising the shear behaviour of steel fibre-reinforced concrete
    Zeranka, S.
    van Zijl, G. P. A. G.
    COMPUTATIONAL MODELLING OF CONCRETE STRUCTURES. EURO-C 2018, 2018, : 605 - 614
  • [10] Investigation of Mechanical Properties of Steel Fibre-Reinforced Concrete
    Ryabchikov, A.
    Tamme, V.
    Laurson, M.
    2ND INTERNATIONAL CONFERENCE ON INNOVATIVE MATERIALS, STRUCTURES AND TECHNOLOGIES, 2015, 96